Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.
For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.
[balabala] O(N)的做法是两指针法或者叫滑动窗口法, right 向前走直到sum > s, 然后left 向前走直到sum < s, 同时更新minLen. 网上找的O(nlogn) 方法不理解,先备忘着,实现之一如Method3, 实现2参见http://www.tuicool.com/articles/miQVzm3
// Method 2: 伸缩滑动窗口法,O(N), 实现2
public int minSubArrayLen2(int s, int[] nums) {
if (nums == null || nums.length == 0)
return 0;
int left = 0, right = 0, sum = 0, minLen = nums.length;
while (right < nums.length) {
while (sum < s && right < nums.length) {
sum += nums[right++];
}
while (sum >= s && left < right) {
minLen = Math.min(minLen, right - left);
sum -= nums[left++];
}
}
return left > 0 ? minLen : 0;
}
// Method 1: 伸缩滑动窗口法,O(N),实现1
public int minSubArrayLen(int s, int[] nums) {
if (nums == null || nums.length == 0)
return 0;
int left = 0, right = 0, sum = 0, minLen = nums.length;
while (left <= right) {
if (sum < s && right < nums.length) {
sum += nums[right++];
} else if (sum < s && right == nums.length) {
break;
}
if (sum >= s) {
minLen = Math.min(minLen, right - left);
if (minLen == 1)
return 1;
sum -= nums[left++];
}
}
return left > 0 ? minLen : 0;
}
// 在不下降的序列中寻找恰好比target小的数出现位置,也即最后一个比target小的数出现的位置
int binarySearchIncreaseLastSmaller(int l, int r, int target, int * nums) {
if (l >= r) return -1;
while (l < r - 1) {
int m = l + ((r - l) >> 1);
if (nums[m] < target) l = m;
else r = m - 1;
}
if (nums[r] < target) return r;
else if (nums[l] < target) return l;
else return -1;
}
// Method 3: O (nlogn)
int minSubArrayLen(int s, int * nums, int numsSize) {
int * Sum = (int*)malloc(sizeof(int) * (numsSize + 1)), minL = numsSize + 1;
Sum[0] = 0;
for (int i = 1; i <= numsSize; i++) Sum[i] = Sum[i - 1] + nums[i - 1];
for (int i = 1; i <= numsSize; i++) {
if (Sum[i] >= s) {
int k = Sum[i];
int BeforePos = binarySearchIncreaseLastSmaller(0, i, Sum[i] - s + 1, Sum);
if (BeforePos != -1 && i - BeforePos < minL) minL = i - BeforePos;
}
}
return minL == numsSize + 1 ? 0 : minL;
}
本文介绍了一种在给定正整数数组中找到满足总和大于等于特定值s的最小子数组长度的方法。通过两种不同实现方式的滑动窗口算法(O(N)),解决了这一问题,并对比了另一种O(nlogn)复杂度的方法。

被折叠的 条评论
为什么被折叠?



