经典动态规划
现在对动态规划的子结构划分和子结构的理解,转移方程还没有明确的认识
Zipper
Time Limit:1000MS | Memory Limit:65536K | |
Total Submissions:9409 | Accepted:3218 |
Description
Given three strings, you are to determine whether the third string can be formed by combining the characters in the first two strings. The first two strings can be mixed arbitrarily, but each must stay in its original order.
For example, consider forming "tcraete" from "cat" and "tree":
String A: cat
String B: tree
String C: tcraete
As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming "catrtee" from "cat" and "tree":
String A: cat
String B: tree
String C: catrtee
Finally, notice that it is impossible to form "cttaree" from "cat" and "tree".
For example, consider forming "tcraete" from "cat" and "tree":
String A: cat
String B: tree
String C: tcraete
As you can see, we can form the third string by alternating characters from the two strings. As a second example, consider forming "catrtee" from "cat" and "tree":
String A: cat
String B: tree
String C: catrtee
Finally, notice that it is impossible to form "cttaree" from "cat" and "tree".
Input
The first line of input contains a single positive integer from 1 through 1000. It represents the number of data sets to follow. The processing for each data set is identical. The data sets appear on the following lines, one data set per line.
For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.
For each data set, the line of input consists of three strings, separated by a single space. All strings are composed of upper and lower case letters only. The length of the third string is always the sum of the lengths of the first two strings. The first two strings will have lengths between 1 and 200 characters, inclusive.
Output
For each data set, print:
Data set n: yes
if the third string can be formed from the first two, or
Data set n: no
if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
Data set n: yes
if the third string can be formed from the first two, or
Data set n: no
if it cannot. Of course n should be replaced by the data set number. See the sample output below for an example.
Sample Input
3 cat tree tcraete cat tree catrtee cat tree cttaree
Sample Output
Data set 1: yes Data set 2: yes Data set 3: no
/////opt[i][j]:表示str1[i],str2[j]能否组合成st3[i+j]用0,1表示; //状态转移方程:若opt[i-1][j],opt[i][j-1]都为0,则opt[i][j]为0; //若opt[i-1][j] ==1;且str3[i+j] == str1[i],则opt[i][j] = 1; //若opt[i][j-1] == 1;且str3[i+j] == str2[j],则opt[i][j] = 1; //初始化,opt[0][0] = 1; //opt[i][0]表示st1[]的前i个字符是否都与str3[i]相符,相符则为1,否则为0; //opt[0][i]表示st2[]的前i个字符是否都与str3[i]相符,相符则为1,否则为0; #include<stdio.h> #define MAX 201 int opt[MAX][MAX]; int main() { int n; int cnt=0; int flag; //freopen("input","r",stdin); char str1[MAX],str2[MAX],str3[MAX*2]; int len_str1,len_str2,len_str3; int i,j; scanf("%d",&n); while(n--) { cnt++; scanf("%s %s %s",str1,str2,str3); len_str1=strlen(str1); len_str2=strlen(str2); len_str3=strlen(str3); if(len_str1+len_str2!=len_str3) { printf("Data set %d: no/n"); continue; } memset(opt,0,sizeof(opt)); opt[0][0]=1; for(i=1;i<=len_str1;i++) { if(opt[i-1][0]==1&&str1[i-1]==str3[i-1]) opt[i][0]=1; else break; } for(j=1;j<=len_str2;j++) { if(opt[0][j-1]==1&&str2[j-1]==str3[j-1]) opt[0][j]=1; else break; } for(i=1;i<=len_str1;i++) { for(j=1;j<=len_str2;j++) { if((opt[i][j-1]==1&&str2[j-1]==str3[i+j-1])||(opt[i-1][j]==1&&str1[i-1]==str3[i+j-1])) opt[i][j]=1; } } if(opt[len_str1][len_str2]) printf("Data set %d: yes/n",cnt); else printf("Data set %d: no/n",cnt); } return 0; }