HDU/HDOJ 2855 2009 Multi-University Training Contest 5 - Host by NUDT 矩阵二分幂

本文介绍了一种基于Fibonacci数列的检查算法FibonacciCheck-up,该算法用于生成独特的ALPC编号。通过将学生编号的各位数字相乘得到的数值n,运用FibonacciCheck-up算法计算出最终的ALPC编号。文章提供了详细的算法实现步骤及样例输入输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fibonacci Check-up

Time Limit: 2000/1000 MS (Java/Others)Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 615Accepted Submission(s): 333


Problem Description
Every ALPC has his own alpc-number just like alpc12, alpc55, alpc62 etc.
As more and more fresh man join us. How to number them? And how to avoid their alpc-number conflicted?
Of course, we can number them one by one, but that’s too bored! So ALPCs use another method called Fibonacci Check-up in spite of collision.

First you should multiply all digit of your studying number to get a number n (maybe huge).
Then use Fibonacci Check-up!
Fibonacci sequence is well-known to everyone. People define Fibonacci sequence as follows: F(0) = 0, F(1) = 1. F(n) = F(n-1) + F(n-2), n>=2. It’s easy for us to calculate F(n) mod m.
But in this method we make the problem has more challenge. We calculate the formula , is the combination number. The answer mod m (the total number of alpc team members) is just your alpc-number.

Input
First line is the testcase T.
Following T lines, each line is two integers n, m ( 0<= n <= 10^9, 1 <= m <= 30000 )

Output
Output the alpc-number.

Sample Input

 
2 1 30000 2 30000

Sample Output

 
1 3

Source

有一个公式:

C(N,1)F1+C(N,2)F2+C(N,3)F3+...+C(N,N)FN=F(2N)

证明方法我有点忘了,大致是利用那个比内公式去推

n=0和1最好特判一下

我的代码:

#include<stdio.h> #include<algorithm> #include<string.h> using namespace std; struct mart{ int mat[3][3]; }; int mod; mart kk; mart multi(mart a,mart b){ mart c; int i,j,k; for(i=1;i<=2;i++) for(j=1;j<=2;j++) { c.mat[i][j]=0; for(k=1;k<=2;k++) c.mat[i][j]=(c.mat[i][j]%mod+(a.mat[i][k]%mod)*(b.mat[k][j]%mod)%mod)%mod; } return c; } mart power(int k){ mart p,q; int i,j; for(i=1;i<=2;i++) for(j=1;j<=2;j++) { p.mat[i][j]=kk.mat[i][j]; if(i==j) q.mat[i][j]=1; else q.mat[i][j]=0; } if(k==0) return q; while(k!=1) { if(k&1) { k--; q=multi(p,q); } else { k=k>>1; p=multi(p,p); } } p=multi(p,q); return p; } int main(){ int n,m,tt; scanf("%d",&tt); mart xx; while(tt--) { scanf("%d%d",&n,&m); if(n==0) { printf("0\n"); continue; } if(n==1) { printf("%d\n",1%m); continue; } mod=m; kk.mat[1][1]=0; kk.mat[1][2]=1; kk.mat[2][1]=1; kk.mat[2][2]=1; xx=power(2*n-1); printf("%d\n",(xx.mat[1][1]+xx.mat[1][2])%mod); } return 0; }



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值