HDOJ/HDU 4034 2011成都网络赛D题

本文探讨了已知各顶点间最短路径长度时如何还原原始图的问题,并通过Floyd算法验证图的合理性,同时介绍了如何计算原图中可能存在的最小边数。

Graph

Time Limit: 2000/1000 MS (Java/Others)Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 355Accepted Submission(s): 195


Problem Description
Everyone knows how to calculate the shortest path in a directed graph. In fact, the opposite problem is also easy. Given the length of shortest path between each pair of vertexes, can you find the original graph?


Input
The first line is the test case number T (T ≤ 100).
First line of each case is an integer N (1 ≤ N ≤ 100), the number of vertexes.
Following N lines each contains N integers. All these integers are less than 1000000.
The jth integer of ith line is the shortest path from vertex i to j.
The ith element of ith line is always 0. Other elements are all positive.


Output
For each case, you should output “Case k: ” first, where k indicates the case number and counts from one. Then one integer, the minimum possible edge number in original graph. Output “impossible” if such graph doesn't exist.


Sample Input

 
3 3 0 1 1 1 0 1 1 1 0 3 0 1 3 4 0 2 7 3 0 3 0 1 4 1 0 2 4 2 0


Sample Output

 
Case 1: 6 Case 2: 4 Case 3: impossible


Source


判断这个图是否合理很简单,就是利用floyd算法在做一次松弛操作。如果发现还有边可以进行松弛的话就输出impossible

然后接下来统计最小边就是去找dis[i][j]能不能表示为dis[i][k]+dis[k][j]的形式

所以说这个题实际上是考察了floyd算法的理解

我的代码:

#include<stdio.h> #include<string.h> int dis[105][105]; int main() { int n,i,j,t,T,k; scanf("%d",&T); for(t=1;t<=T;t++) { scanf("%d",&n); for(i=1;i<=n;i++) for(j=1;j<=n;j++) scanf("%d",&dis[i][j]); bool flag=true; int ans=0; for(k=1;k<=n;k++) for(i=1;i<=n;i++) for(j=1;j<=n;j++) { if(i!=j&&j!=k&&i!=k) { if(dis[i][j]>dis[i][k]+dis[k][j]) { if(flag) printf("Case %d: impossible\n",t); flag=false; } } } if(flag) { for(i=1;i<=n;i++) for(j=1;j<=n;j++) { bool loop=true; if(i!=j) { for(k=1;k<=n;k++) { if(i!=k&&j!=k) { if(dis[i][j]==dis[i][k]+dis[k][j]) loop=false; } } if(loop) ans++; } } printf("Case %d: %d\n",t,ans); } } return 0; }


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值