链接:http://acm.hdu.edu.cn/showproblem.php?pid=3718
But the LABEL of group doesn't make sense and the LABEL is just used to indicate different groups. So the representations {P,P,O,P,O,O,Q,Q,Q,Q} and {E,E,F,E,F,F,W,W,W,W} are equivalent to the original mapping sequence. However, the representations {A,A,A,A,B,B,C,C,C,C} and
{D,D,D,D,D,D,G,G,G,G} are not equivalent.
The pupils in class submit their mapping sequences and the teacher should read and grade the homework. The teacher grades the homework by calculating the maximum similarity between pupils' mapping sequences and the answer sequence. The definition of similarity is as follow.
Similarity(S, T) = sum(S i == T i) / L
L = Length(S) = Length(T), i = 1, 2,... L,
where sum(S i == T i) indicates the total number of equal labels in corresponding positions. The maximum similarity means the maximum similarities between S and all equivalent sequences of T, where S is the answer and fixed. Now given all sequences submitted by pupils and the answer sequence, you should calculate the sequences' maximum similarity.
题目很明显,就是利用KM算法。。这个很早就想到过了。
但是一直没有动手敲过这个题目。
今天鼓起勇气敲了下。。还是发现了不少问题。
首先是k和m输入反了,找了好久都不知道是哪儿WA了。。
然后就是建图,建图可以用26个顶点来建图。
其它的建图方式可能回超时。
我的代码:
#include<stdio.h> #include<algorithm> #include<string.h> #include<map> #define inf 199999999 using namespace std; int link[30],lx[30],ly[30]; bool x[30],y[30]; int net[30][30]; char s[10005]; bool dfs(int u) { int i; x[u]=true; for(i=0;i<26;i++) { if(lx[u]+ly[i]==net[u][i]&&!y[i]) { y[i]=true; if(link[i]==-1||dfs(link[i])) { link[i]=u; return true; } } } return false; } int main() { int i,j,n,m,k,t,ii,jj; char temp[2]; scanf("%d",&t); while(t--) { memset(s,'\0',sizeof(s)); scanf("%d%d%d",&n,&k,&m); for(i=1;i<=n;i++) { scanf("%s",temp); s[i]=temp[0]; } for(i=1;i<=m;i++) { memset(net,0,sizeof(net)); for(j=1;j<=n;j++) { scanf("%s",temp); net[s[j]-'A'][temp[0]-'A']++; } memset(x,0,sizeof(x)); memset(y,0,sizeof(y)); memset(link,-1,sizeof(link)); memset(ly,0,sizeof(ly)); for(ii=0;ii<30;ii++) lx[ii]=inf; for(k=0;k<26;k++) { while(1) { memset(x,0,sizeof(x)); memset(y,0,sizeof(y)); if(dfs(k)) break; int d=inf; for(ii=0;ii<26;ii++) { if(x[ii]) { for(jj=0;jj<26;jj++) { if(!y[jj]&&lx[ii]+ly[jj]-net[ii][jj]<d) d=lx[ii]+ly[jj]-net[ii][jj]; } } } for(ii=0;ii<26;ii++) if(x[ii]) lx[ii]=lx[ii]-d; for(ii=0;ii<26;ii++) if(y[ii]) ly[ii]=ly[ii]+d; } } int ans=0; for(ii=0;ii<26;ii++) ans=ans+net[link[ii]][ii]; printf("%.4lf\n",double(ans)/double(n)); } } return 0; }
本文探讨了一种利用KM算法解决儿童在完成分类作业时如何进行评分的方法。通过构建模型,教师能够准确计算出学生提交的答案与标准答案之间的最大相似度,从而为学生作业打分。此方法不仅简化了评分过程,还能提高评分的公正性和准确性。
2102

被折叠的 条评论
为什么被折叠?



