俗话说:“万变不离其宗”,程序亦是如此。
无论是 HashSet 、 HashMap 、 Hashtable ,还是 TreeSet 、 PriorityQueue ,都不离其原则。众所周知,衡量一个程序的好坏、数据结构好坏的重要指标是其空间复杂度和时间复杂度。
“鱼和熊掌不可兼得”,时间复杂度和空间复杂度也不能兼顾。比如数组,由于存储空间物理上不连续,其空间占用大;而链表,虽然占用空间较小,而且可以充分利用零散的存储空间,但它没有数组所拥有的下标,导致其时间复杂度较高。
万事万物都有其制约因素,所以也就没有完全意义上的完美,但我们可以寻求“相对的完美”。时间复杂度和空间复杂度势必有一方要被舍弃,但高速发展的社会不仅要求时间上的高效,也要求空间上的资源高效利用。看官(应该有)要问了,“那怎么办呀”?
我们聪明的老祖宗已经为我们埋下了伏笔。“中庸”的思想帮到了我们。既然各有优点,那何不有机的结合各种结构的优点,这样不就可以达到时间复杂度和空间复杂度的平衡点,也许会是黄金分割点。 TreeSet 就是个鲜明的例子,是 tree 结构和 Set 结构的有机结合,极大的提高了数据结构的“优雅”和“韵律”。
看到这,你也许以为,“有机结合各家所长”就是“宗”了。非也,宗者,乃假外物以为余是也。借助外力补足缺点才是王道。有机结合是通过结合利用其它结构补足自身补足。
除此之外,通过适当的转换,也可以达到优化结构的目的。高中物理书中写道:“力是改变物体状态的原因”。对于 IT 男男女女来说,我们想要改变现有对象的状态时,添加方法就是我们的“力”。你没有下标,增加了时间复杂度。 Ok ,我将你跟连续的下标联系起来不就行啦!以 hash 结构为例,基本思想就是通过 hash 函数(即我们的“力”),改变原有的数据结构特点,以补不足。显然, HashSet 就是用 hash 函数构造的 Set ; HashMap 就是用 hash 函数构造的 Map ……你若问我 hash 函数是什么?它是具体情况而定。
下面,以我自定义的 hash 结构为例。
构建一个简单的 hash 结构,流程如下:
1、 利用 hash 函数得到 hash 值,通常为键值或下标位置。
2、 将对应的属性值放入到对应键值或下标的相应位置。如选择的是键值对就放入集合内;如选择的是链表就放入节点,加在末尾如下图 1 。
3、 因为是通过函数计算,且键值和下标的本地 hashcode 值通过计算可能相同,就会产生冲突,链表可以加在末尾,但随冲突的增加,链表越来越长,采用 hash 结构的优势越来越弱,此时就要重构 hash 结构。是否需要重构根据具体情况而设定的峰值而定。如下图 2 ,为 rehash 后的结果。
4、 于是出现了问题出现了,怎样重构更好呢? hash 结构其实是通过 hash 函数对各个属性值的散列。既然是散列,就会有一个散列的程度问题。重构时,如能使当前结构内数据 rehash 后,其散列程度趋于 0 时,重构效果较好。统计学可以通过计算残差,判断之前的系统是否稳定,相信对于 hash 结构,同样适用。散列程度的值可以根据冲突数与总数据量之间的关系得到。如下图 3 。
图1:
图2:
图3:
我的代码示例如下:
Hashstructure :
package hash;
import java.util.LinkedList;
public class HashStruct {
// 定义一个数组
private static int hashcode = 10;// hashcode值用于rehash时,重构hash结构
private static LinkedList[] hasharray;
private static int clashes;// 记录冲突数
private static int numbers;// 记录结构内成员数
// hash结构就是根据当前数值,通过hash函数,算得当前值应放入的hashstructure中的位置。
// 设计hash函数
public int hashFunction(int x) {
int hash = x % hashcode;// hashcode为构建的hash函数中的一个变量
return hash;
}
// 向hash结构中添加元素
public void add(int key) {
int index = this.hashFunction(key);
if (hasharray[index].size()>0) {
clashes++;
}
hasharray[index].add(key);
numbers++;
// 判断添加后冲突数是否超过峰值,如超过,重构hash结构
if (this.rank(clashes, numbers)) {
this.rehash(hasharray);
}
}
// 当冲突数超过峰值时,需要重建hash结构
public void rehash(LinkedList[] hasharray) {
hashcode += 5;
LinkedList[] hasharray2 = hasharray.clone();
hasharray = null;
this.init();
for (int i = 0; i < 10; i++) {
for (int j = 0; j < hasharray2[i].size(); j++) {
this.add(hasharray2[i].get(j).hashCode());
}
}
System.out.println("rehashed!");
}
// 峰值计算函数
public boolean rank(int clash, int numbers) {
boolean result = false;
double c=(double) clash / (double) numbers;
if (((double) clash / (double) numbers) >= 0.65) {
result = true;
}
return result;
}
// 遍历对应hash值下的元素
public void get() {
for (int i = 0; i < hasharray.length; i++) {
System.out.println("hasharray["+i+"]:"+hasharray[i]);
}
}
// 初始化hashstruct
public void init() {
hasharray = new LinkedList[hashcode];
clashes = 0;// 记录冲突数
numbers = 0;// 记录结构内成员数
for (int i = 0; i < hashcode; i++) {
hasharray[i] = new LinkedList<Integer>();
}
}
}
Test :
package hash;
public class Test {
public static void main(String[] args) {
HashStruct hs = new HashStruct();
hs.init();
// 添加10个数
hs.add(10);
hs.add(12);
hs.add(22);
hs.add(25);
hs.add(15);
hs.add(35);
hs.add(27);
hs.add(37);
hs.add(47);
hs.add(17);
// 检查添加结果
hs.get();
//继续添加,验证rehash
for(int i=1;i<20;i++){
hs.add(i*7);
}
hs.get();
}
}
图4:
如上图 4 为输出结果。对比上图 1 和图 2 ,达到了 rehash 的效果。(蓝色线上是初始构建 hash 结构的测试,下方是 rehash 测试。注意红色标记为初始时插入测试的数据。)
Array AND LinkedList Hashstructure 雌雄双剑剑法演示完毕,请各位看官出招。