how the Android IPC system works

I will use call IAudioFlinger::setMode API as a sample scenario to show how the Android IPC

system works. AudioFlinger is a service in the media_server program

Service Manager Run

service_manager provide service manager service to other process. It must be started before any

other service gets running.

int main(int argc, char **argv)

{

struct binder_state *bs;

void *svcmgr = BINDER_SERVICE_MANAGER;

bs = binder_open(128*1024);

if (binder_become_context_manager(bs)) {

LOGE("cannot become context manager (%s)\n", strerror(errno));

return -1;

}

svcmgr_handle = svcmgr;

binder_loop(bs, svcmgr_handler);

return 0;

}

It first open “/dev/binder” driver and then call BINDER_SET_CONTEXT_MGR ioctl to let

binder kernel driver know it acts as a manager. Then it enters into a loop to wait for any data from

other process.

void binder_loop(struct binder_state *bs, binder_handler func)

{

int res;

struct binder_write_read bwr;

unsigned readbuf[32];

bwr.write_size = 0;

bwr.write_consumed = 0;

bwr.write_buffer = 0;

readbuf[0] = BC_ENTER_LOOPER;

binder_write(bs, readbuf, sizeof(unsigned));

for (;;) {

bwr.read_size = sizeof(readbuf);

bwr.read_consumed = 0;

bwr.read_buffer = (unsigned) readbuf;

res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);

if (res < 0) {

LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));

break;

}

res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);

if (res == 0) {

LOGE("binder_loop: unexpected reply?!\n");

break;

}

if (res < 0) {

LOGE("binder_loop: io error %d %s\n", res, strerror(errno));

break;

}

}

}

Pay attention to BINDER_SERVICE_MANAGER.

/* the one magic object */

#define BINDER_SERVICE_MANAGER ((void*) 0)

BINDER_SERVICE_MANAGER is the registered handle for service_manager. The other process

must use this handle to talk with service_manager.

Get IServiceManager

To get an IServiceManager instance the only method is to call defaultServiceManager

implemented in IServiceManager.cpp.

sp<IServiceManager> defaultServiceManager()

{

if (gDefaultServiceManager != NULL) return gDefaultServiceManager;

{

AutoMutex _l(gDefaultServiceManagerLock);

if (gDefaultServiceManager == NULL) {

gDefaultServiceManager = interface_cast<IServiceManager>(

ProcessState::self()->getContextObject(NULL));

}

}

return gDefaultServiceManager;

}

gDefaultServiceManager is defined in libutil, so any program or library which included libutil will

have this symbol, it’s unique in one process. The first time gDefaultServiceManager is NULL, so

it will first get a ProcessState instance through ProcessState::self(). One process has only one

ProcessState instance. ProcessState will open “/dev/binder” driver for IPCThreadState use.

ProcessState::ProcessState()

: mDriverFD(open_driver())

Now we have an instance of ProcessState, let’s look at the getContextObject.

sp<IBinder> ProcessState::getContextObject(const sp<IBinder>& caller)

{

if (supportsProcesses()) {

return getStrongProxyForHandle(0);

} else {

return getContextObject(String16("default"), caller);

}

}

The board support binder driver, so we will get into getStrongProxyForHandle. (Handle 0 is

reserved for service manager, which will be explained later.)

sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle)

{

sp<IBinder> result;

AutoMutex _l(mLock);

handle_entry* e = lookupHandleLocked(handle);

if (e != NULL) {

// We need to create a new BpBinder if there isn't currently one, OR we

// are unable to acquire a weak reference on this current one. See comment

// in getWeakProxyForHandle() for more info about this.

IBinder* b = e->binder;

if (b == NULL || !e->refs->attemptIncWeak(this)) {

b = new BpBinder(handle);

e->binder = b;

if (b) e->refs = b->getWeakRefs();

result = b;

} else {

// This little bit of nastyness is to allow us to add a primary

// reference to the remote proxy when this team doesn't have one

// but another team is sending the handle to us.

result.force_set(b);

e->refs->decWeak(this);

}

}

return result;

}

The first time b will be NULL, so the code will new an BpBinder instance. BpBinder is a base

proxy class for remote binder object.

BpBinder::BpBinder(int32_t handle)

: mHandle(handle)

, mAlive(1)

, mObitsSent(0)

, mObituaries(NULL)

{

LOGV("Creating BpBinder %p handle %d\n", this, mHandle);

extendObjectLifetime(OBJECT_LIFETIME_WEAK);

IPCThreadState::self()->incWeakHandle(handle);

}

IPCThreadState::incWeakHandle will add a BC_INCREFS command in output buffer.

void IPCThreadState::incWeakHandle(int32_t handle)

{

LOG_REMOTEREFS("IPCThreadState::incWeakHandle(%d)\n", handle);

mOut.writeInt32(BC_INCREFS);

mOut.writeInt32(handle);

}

Now getContextObject returns a BpBinder instance, it will be interface_cast to IServiceManager.

interface_cast is defined in IInterface.h. It will be extended as:

inline sp<IServiceManager> interface_cast(const sp<IBinder>& obj)

{

return IServiceManager::asInterface(obj);

}

Now let’s take a look at definition of IServiceManager.

class IServiceManager : public IInterface

{

public:

DECLARE_META_INTERFACE(ServiceManager);

/**

* Retrieve an existing service, blocking for a few seconds

* if it doesn't yet exist.

*/

virtual sp<IBinder> getService( const String16& name) const = 0;

/**

* Retrieve an existing service, non-blocking.

*/

virtual sp<IBinder> checkService( const String16& name) const = 0;

/**

* Register a service.

*/

virtual status_t addService( const String16& name,

const sp<IBinder>& service) = 0;

/**

* Return list of all existing services.

*/

virtual Vector<String16> listServices() = 0;

enum {

GET_SERVICE_TRANSACTION = IBinder::FIRST_CALL_TRANSACTION,

CHECK_SERVICE_TRANSACTION,

ADD_SERVICE_TRANSACTION,

LIST_SERVICES_TRANSACTION,

};

};

DECLARE_META_INTERFACE macro is defined as follows in IInterface.h. And it will be

extended to the following code:

static const String16 descriptor;

static sp<IServiceManager> asInterface(const sp<IBinder>& obj);

virtual String16 getInterfaceDescriptor() const;

As you can see, DECLARE_META_INTERFACE macro declares two functions which are

implemented by IMPLEMENT_META_INTERFACE macro in IServiceManager.cpp.

IMPLEMENT_META_INTERFACE(ServiceManager, "android.os.IServiceManager");

The code will be extended like this.

const String16 IServiceManager::descriptor(NAME);

String16 IServiceManager::getInterfaceDescriptor() const {

return IServiceManager::descriptor;

}

sp<IServiceManager> IServiceManager::asInterface(const sp<IBinder>& obj)

{

sp<IServiceManager> intr;

if (obj != NULL) {

intr = static_cast<IServiceManager*>(

obj->queryLocalInterface(

IServiceManager::descriptor).get());

if (intr == NULL) {

intr = new BpServiceManager(obj);

}

}

return intr;

}

So IServiceManager::asInterface will finally new a BpServiceManager instance and return it to

user. BpServiceManager works as a proxy for remote BnServiceManager. Any operation on

IServiceManager now actually is to call the corresponding virtual functions in BpServiceManager.

Summary:

This section gives out details in how to get a proxy object for remote object.

Assume you want to implement your own service IFunnyTest, you must do the following:

 Put DECLARE_META_INTERFACE(FunnyTest) macro in your interface header file.

 Put IMPLEMENT_META_INTERFACE(Funnytest, “your unique name”) macro in your

interface source file.

 Implement your own BpFunnyTest class.

Generate AudioFlinger Service

media_server program will start the AudioFlinger service. Here is the code.

int main(int argc, char** argv)

{

sp<ProcessState> proc(ProcessState::self());

sp<IServiceManager> sm = defaultServiceManager();

LOGI("ServiceManager: %p", sm.get());

AudioFlinger::instantiate();

MediaPlayerService::instantiate();

CameraService::instantiate();

ProcessState::self()->startThreadPool();

IPCThreadState::self()->joinThreadPool();

}

AudioFlinger will call IServiceManager::addService, which is a RPC call.

void AudioFlinger::instantiate() {

defaultServiceManager()->addService(

String16("media.audio_flinger"), new AudioFlinger());

}

AudioFlinger inherits from BnAudioFlinger, which is a template BnInterface class.

class BnAudioFlinger : public BnInterface<IAudioFlinger>

{

public:

virtual status_t onTransact( uint32_t code,

const Parcel& data,

Parcel* reply,

uint32_t flags = 0);

};

BnInterface inherits from BBinder.

template<typename INTERFACE>

class BnInterface : public INTERFACE, public BBinder

{

public:

virtual sp<IInterface> queryLocalInterface(const String16& _descriptor);

virtual String16 getInterfaceDescriptor() const;

protected:

virtual IBinder* onAsBinder();

};

template<typename INTERFACE>

IBinder* BnInterface<INTERFACE>::onAsBinder()

{

return this;

}

According to BnInterface’m implementation we know that the parameter passed to

IServiceManager::addService is the address of new AudioFlinger instance. BBinder derives from

IBinder, its transact function is to call virtual function onTransact.

status_t BBinder::transact(

uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)

{

data.setDataPosition(0);

status_t err = NO_ERROR;

switch (code) {

case PING_TRANSACTION:

reply->writeInt32(pingBinder());

break;

default:

err = onTransact(code, data, reply, flags);

break;

}

if (reply != NULL) {

reply->setDataPosition(0);

}

return err;

}

The most important virtual functions is onTransact. BnAudioFlinger implemented the virtual

function. For the scenario, we just need to focus on SET_MODE branch.

status_t BnAudioFlinger::onTransact(

uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)

{

switch(code) {

case SET_MODE: {

CHECK_INTERFACE(IAudioFlinger, data, reply);

int mode = data.readInt32();

reply->writeInt32( setMode(mode) );

return NO_ERROR;

} break;

media_server will enter into a loop through IPCThreadState::joinThreadPool, just like

service_manager, it will be waited data from other process in talkWithDriver.

void IPCThreadState::joinThreadPool(bool isMain)

{

mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER);

status_t result;

do {

int32_t cmd;

result = talkWithDriver();

if (result >= NO_ERROR) {

size_t IN = mIn.dataAvail();

if (IN < sizeof(int32_t)) continue;

cmd = mIn.readInt32();

result = executeCommand(cmd);

}

// Let this thread exit the thread pool if it is no longer

// needed and it is not the main process thread.

if(result == TIMED_OUT && !isMain) {

break;

}

} while (result != -ECONNREFUSED && result != -EBADF);

mOut.writeInt32(BC_EXIT_LOOPER);

talkWithDriver(false);

}

Assume you want to implement your own service IFunnyTest, you must do the following:

 Implement your own BnFunnyTest class.

 In the process your service running, call IPCThreadState::joinThreadPool to start the loop for

binder.

RPC Call IServiceManager::addService

We called IServiceManager::addService, which means call BpServiceManager::addService.

virtual status_t addService(const String16& name, const sp<IBinder>& service)

{

Parcel data, reply;

data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());

data.writeString16(name);

data.writeStrongBinder(service);

status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);

return err == NO_ERROR ? reply.readInt32() : err;

}

Parcel is simple. We can think it as a continuous buffer. Pay attention here, service parameter

points to BBinder object(AudioFlinger derived from Bn)

status_t Parcel::writeStrongBinder(const sp<IBinder>& val)

{

return flatten_binder(ProcessState::self(), val, this);

}

flatten_binder will generate a Binder command. Because BBinder is a local binder object, so the

code branch to the lines marked red.

status_t flatten_binder(const sp<ProcessState>& proc,

const sp<IBinder>& binder, Parcel* out)

{

flat_binder_object obj;

obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;

if (binder != NULL) {

IBinder *local = binder->localBinder();

if (!local) {

BpBinder *proxy = binder->remoteBinder();

if (proxy == NULL) {

LOGE("null proxy");

}

const int32_t handle = proxy ? proxy->handle() : 0;

obj.type = BINDER_TYPE_HANDLE;

obj.handle = handle;

obj.cookie = NULL;

} else {

obj.type = BINDER_TYPE_BINDER;

obj.binder = local->getWeakRefs();

obj.cookie = local;

}

}

return finish_flatten_binder(binder, obj, out);

}

Pay attention to the red lines, local’s address is put into the packet(It will be used later). After the

packet for addService RPC call is made, BpServiceManager::addService will call BpBinder’s

transact.

status_t BpBinder::transact(

uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)

{

// Once a binder has died, it will never come back to life.

if (mAlive) {

status_t status = IPCThreadState::self()->transact(

mHandle, code, data, reply, flags);

if (status == DEAD_OBJECT) mAlive = 0;

return status;

}

return DEAD_OBJECT;

}

BpBinder calls IPCThreadState::transact to start a transaction to the binder object corresponding

to mHandle. For this scenario, mHandle is 0.

status_t IPCThreadState::transact(int32_t handle,

uint32_t code, const Parcel& data,

Parcel* reply, uint32_t flags)

{

status_t err = data.errorCheck();

flags |= TF_ACCEPT_FDS;

if (err == NO_ERROR) {

LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),

(flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");

err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);

}

if (err != NO_ERROR) {

if (reply) reply->setError(err);

return (mLastError = err);

}

if ((flags & TF_ONE_WAY) == 0) {

if (reply) {

err = waitForResponse(reply);

} else {

Parcel fakeReply;

err = waitForResponse(&fakeReply);

}

} else {

err = waitForResponse(NULL, NULL);

}

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值