【STM32 .Net MF开发板学习-10】SPI测试之触摸屏坐标获取

本文介绍SPI接口及其在STM32F103xx芯片上的应用,重点讲解了通过SPI与ADS7843触摸屏信号处理芯片进行通信的方法,包括SPI配置参数、核心代码实现及坐标获取。
AI助手已提取文章相关产品:

STM32F103xx Cortex-M3系列的芯片含三路SPI通道,红牛开发板用了两路,SPI1连接AT45DB161B型号的SPI FlashSPI2连接ADS7843触摸屏信号处理芯片,SPI3最好不要用,因为和JTAG的管脚有冲突,调试时会有问题。EM-STM3210E开发板由于不含触摸屏,所以只用了一路来连接SPI Flash。本篇博文介绍触摸屏坐标获取,所以只有拥有红牛开发板的用户可以测试。

先简单介绍一下SPI相关的知识,SPI是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在 EEPROMFLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间,是一种高速的,全双工,同步的通信总线。

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(用于单向传输时,也就是半双工方式),相关管脚含义如下:

1SDO 主设备数据输出,从设备数据输入   

2SDI 主设备数据输入,从设备数据输出

3SCLK 时钟信号,由主设备产生  

 (4CS 从设备使能信号,由主设备控制

(详情请参见百度百科SPI词条:http://baike.baidu.com/view/245026.htm

再说一下ADS7843芯片的相关知识,红牛开发板关于这个芯片的原理图如下:

比较可惜的是,从原理图上看其中断管脚(INT)没有引出,所以只能通过轮询获取X,Y坐标了。

ADS7843芯片的SPI通信时序图如下:

ADS7843参考资料:http://wenku.baidu.com/view/bc414573f242336c1eb95e6c.html

ADS7843相关资料可知,读X坐标的控制字为0x90,读Y坐标的控制字为0xD0。从通信时序图可知,回传的数据为12位,从返回的第2个字节开始算起,其格式如下:

2个字节:12位的高8

3个字节:112位的低4位,并且在该字节的高位,低4位补零。

换算公式:X(或Y = (byte[2]<<8 | byte[1])>>4

需要说明的是,SPI驱动需要配置的参数的很多,有些参数在驱动中采用了默认值,其内容如下:

两线双向 / 主模式 / 第一个时钟沿触发 / 软件从设备管理启用 /先发送高字节。

其它的参数是可配置的,配置接口类如下:

public class Configuration

{

public readonly Cpu.Pin BusyPin;

public readonly bool BusyPin_ActiveState;

public readonly bool ChipSelect_ActiveState;

public readonly uint ChipSelect_HoldTime;

public readonly Cpu.Pin ChipSelect_Port;

public readonly uint ChipSelect_SetupTime;

public readonly bool Clock_Edge;

public readonly bool Clock_IdleState;

public readonly uint Clock_RateKHz;

public readonly SPI.SPI_module SPI_mod;

……

}

需要说明的是,BusyPin管脚一般不用配置,另外ChipSelect_Port片选管脚一定不要配置,SPI驱动中已经进行了配置,我就是因为配置了这个,害的我调试了近两天的时间才发现这个问题。

SPI创建和声明的代码如下:

SPI.Configuration spiConfig = new SPI.Configuration((Cpu.Pin)(-1), false, 1, 1, false, true, 2250, SPI.SPI_module.SPI2);

SPI spi = new SPI(spiConfig);

获取触摸屏的核心代码如下:

static void GetPoint(SPI spi, out int ux, out int uy)

{

int i, d1 = 0xFFFF, d2 = 0xFFFF;

byte[] writeBufferX = new byte[3] { 0x90, 0, 0 };

byte[] writeBufferY = new byte[3] { 0xD0, 0, 0};

byte[] readBuffer = new byte[2] { 0 ,0};

//--

for (i = 0; i <4; i++)

{

spi.WriteRead(writeBufferX, readBuffer, 1);

d1 = (readBuffer[0] << 8 | readBuffer[1])>>4;

if (d1 == d2) break;

d2 = d1;

}

uy = d1;

//--

d2 = 0xFFFF;

for (i = 0; i < 2; i++)

{

spi.WriteRead(writeBufferY,readBuffer, 1);

d1 = (readBuffer[0] << 8 | readBuffer[1]) >> 4;

if (d1 == d2) break;

d2 = d1;

}

ux = d1;

}

以上函数获取的其实并不是我们习惯的屏幕坐标,如(0,0-320,240),获取的数据需要转换才成,这部分代码我在示例中没有添加,希望有兴趣的网友当做一个练习,自己做一下,相关算法可以参考如下文章:

http://wenku.baidu.com/view/b163984d2b160b4e767fcf39.html

示例代码运行后的效果图如下,你直接在屏幕上进行敲击,就可以在屏幕上看到相应的坐标变化:

注意:红牛开发板需要下载最新的V0.9.5固件才能正常运行。

-----------------------------------------------------------------------------------------

【低价开发板】http://item.taobao.com/item.htm?id=7117999726

源码下载:http://www.sky-walker.com.cn/yefan/MFV40/SourceCode/SPITest_ADS7843.rar

文章参考: .Net Micro Framework 快速入门

中文讨论组:http://space.cnblogs.com/group/MFSoft/

您可能感兴趣的与本文相关内容

#include "main.h" /*----------------------------------------------------------------------------------------------------------*/ // 添加全局变量 ConfigData g_config; uint8_t x_left_running = 0; //手动控制变量 uint8_t x_right_running = 0; //手动控制变量 uint8_t z_up_running = 0; //手动控制变量 uint8_t z_down_running = 0; //手动控制变量 uint8_t levelState; // 液面传感器状态(0:正常 1:异常) // 静态变量保存历史值,用于判断是否变化(仅初始化一次) static int32_t last_temp = 0; // 初始化为极小值,确保首次能触发更新 static int32_t last_temp2 = 0; // 初始化为极小值,确保首次能触发更新 static uint8_t last_level = 0; // 初始化为极大值,确保首次能触发更新 /*----------------------------------------------------------------------------------------------------------*/ // 初始化SD卡文件 FIL step_file; FRESULT fr; FIL log_file; FIL config_file; /*----------------------------------------------------------------------------------------------------------*/ extern volatile uint8_t x_right_limit_triggered; extern volatile uint8_t z_up_limit_triggered; /*----------------------------------------------------------------------------------------------------------*/ // 全局变量:记录当前状态、延时开始时间、目标延时 StainState g_stain_state = STAIN_IDLE; // 当前染色状态 uint32_t g_delay_start_tick = 0; // 延时开始的时间戳(毫秒) uint32_t g_current_delay_s = 0; // 当前步骤的目标延时时长(毫秒) /*----------------------------------------------------------------------------------------------------------*/ // 从SD卡读取配置参数(扩展支持新参数) uint8_t read_config_from_sd(ConfigData *config) { FIL config_file; FRESULT fr; char line[4096]; fr = f_open(&config_file, "0:config.txt", FA_READ); delay_ms(5); if (fr != FR_OK) { printf("config2.t0.txt=\"配置文件打开失败\"\xff\xff\xff"); config->x_pos1 = 160000; config->x_pos2 = 510000; config->x_pos3 = 960000; config->x_pos4 = 1370000; config->x_pos5 = 1750000; config->x_pos6 = 2080000; config->x_pos7 = 2400000; config->x_pos8 = 2710000; config->x_pos9 = 3020000; config->x_pos10 = 80000; config->x_offset = 0; config->z_soak = 230000; config->z_lift = 480000; config->z_lift1 = 0; config->t_fix = 60; // 30min config->t_rinse = 10; // 30s config->t_acid = 60; // 30min config->t_stain = 60; // 45min config->t_dehy1 = 60; // 10min config->t_dehy2 = 60; config->t_dehy3 = 60; config->t_dehy4 = 60; config->t_dry = 10; // 20min write_config_to_sd(config); return 1; } delay_ms(5); while (f_gets(line, sizeof(line), &config_file)) { if (strstr(line, "X_POS1:")) sscanf(line, "X_POS1:%ld", &config->x_pos1); else if (strstr(line, "X_POS2:")) sscanf(line, "X_POS2:%ld", &config->x_pos2); else if (strstr(line, "X_POS3:")) sscanf(line, "X_POS3:%ld", &config->x_pos3); else if (strstr(line, "X_POS4:")) sscanf(line, "X_POS4:%ld", &config->x_pos4); else if (strstr(line, "X_POS5:")) sscanf(line, "X_POS5:%ld", &config->x_pos5); else if (strstr(line, "X_POS6:")) sscanf(line, "X_POS6:%ld", &config->x_pos6); else if (strstr(line, "X_POS7:")) sscanf(line, "X_POS7:%ld", &config->x_pos7); else if (strstr(line, "X_POS8:")) sscanf(line, "X_POS8:%ld", &config->x_pos8); else if (strstr(line, "X_POS9:")) sscanf(line, "X_POS9:%ld", &config->x_pos9); else if (strstr(line, "X_POS10:")) sscanf(line, "X_POS10:%ld", &config->x_pos10); else if (strstr(line, "X_OFFSET:")) sscanf(line, "X_OFFSET:%ld", &config->x_offset); else if (strstr(line, "Z_SOAK:")) sscanf(line, "Z_SOAK:%ld", &config->z_soak); else if (strstr(line, "Z_LIFT:")) sscanf(line, "Z_LIFT:%ld", &config->z_lift); else if (strstr(line, "Z_LIFT1:")) sscanf(line, "Z_LIFT1:%ld", &config->z_lift1); else if (strstr(line, "T_FIX:")) sscanf(line, "T_FIX:%lu", &config->t_fix); else if (strstr(line, "T_RINSE:")) sscanf(line, "T_RINSE:%lu", &config->t_rinse); else if (strstr(line, "T_ACID:")) sscanf(line, "T_ACID:%lu", &config->t_acid); else if (strstr(line, "T_STAIN:")) sscanf(line, "T_STAIN:%lu", &config->t_stain); else if (strstr(line, "T_DEHY1:")) sscanf(line, "T_DEHY1:%lu", &config->t_dehy1); else if (strstr(line, "T_DEHY2:")) sscanf(line, "T_DEHY2:%lu", &config->t_dehy2); else if (strstr(line, "T_DEHY3:")) sscanf(line, "T_DEHY3:%lu", &config->t_dehy3); else if (strstr(line, "T_DEHY4:")) sscanf(line, "T_DEHY4:%lu", &config->t_dehy4); else if (strstr(line, "T_DRY:")) sscanf(line, "T_DRY:%lu", &config->t_dry); } f_close(&config_file); return 0; } /*----------------------------------------------------------------------------------------------------------*/ // 写入配置参数到SD卡 void write_config_to_sd(ConfigData *config) { FIL config_file; FRESULT fr; UINT bw; char line[2048]; fr = f_open(&config_file, "0:config.txt", FA_WRITE | FA_CREATE_ALWAYS); if (fr != FR_OK) { printf("config2.b3.txt=\"配置文件打开失败\"\xff\xff\xff"); return; }else if(fr == FR_OK) { f_lseek(&config_file, 0); // 移至文件开头,准备覆盖写入 } sprintf(line, "X_POS1:%ld\r\n", config->x_pos1); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS2:%ld\r\n", config->x_pos2); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS3:%ld\r\n", config->x_pos3); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS4:%ld\r\n", config->x_pos4); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS5:%ld\r\n", config->x_pos5); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS6:%ld\r\n", config->x_pos6); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS7:%ld\r\n", config->x_pos7); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS8:%ld\r\n", config->x_pos8); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS9:%ld\r\n", config->x_pos9); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_POS10:%ld\r\n", config->x_pos10); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "X_OFFSET:%ld\r\n", config->x_offset); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "Z_SOAK:%ld\r\n", config->z_soak); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "Z_LIFT:%ld\r\n", config->z_lift); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "Z_LIFT1:%ld\r\n", config->z_lift1); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_FIX:%lu\r\n", config->t_fix); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_RINSE:%lu\r\n", config->t_rinse); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_ACID:%lu\r\n", config->t_acid); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_STAIN:%lu\r\n", config->t_stain); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_DEHY1:%lu\r\n", config->t_dehy1); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_DEHY2:%lu\r\n", config->t_dehy2); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_DEHY3:%lu\r\n", config->t_dehy3); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_DEHY4:%lu\r\n", config->t_dehy4); f_write(&config_file, line, strlen(line), &bw); sprintf(line, "T_DRY:%lu\r\n", config->t_dry); f_write(&config_file, line, strlen(line), &bw); f_sync(&config_file); f_close(&config_file); delay_ms(10); printf("config2.b3.txt=\"配置成功\"\xff\xff\xff"); printf("config2.tm1.en=1\xff\xff\xff"); USART_ClearBuffer(); } void write_log(int32_t x, int32_t z) { FRESULT fr; UINT bw; char log_line[512]; char time_str[64]; // 存储时间字符串 "YYYY-MM-DD HH:MM:SS" // 1. 通过RTC获取当前时间 RTC_Get(); // 2. 格式化时间字符串 sprintf(time_str, "%04d-%02d-%02d %02d:%02d:%02d", calendar.w_year, calendar.w_month, calendar.w_date, calendar.hour, calendar.min, calendar.sec); // 3. 打开日志文件(追加模式) fr = f_open(&log_file, "0:log.txt", FA_WRITE | FA_OPEN_ALWAYS); if (fr != FR_OK) { OLED_ShowString(1, 1, "Log Open Err"); printf("config3.t0.txt=\"追踪文件打开失败\"\xff\xff\xff"); printf("config3.tm3.en=1\xff\xff\xff"); return; } // 4. 移动到文件末尾(准备追加内容) f_lseek(&log_file, f_size(&log_file)); // 5. 格式化日志内容(末尾仅添加一次 \r\n 换行) sprintf(log_line, "[%s] X_位置:%ld\r, Z_位置:%ld\r\n", time_str,x,z); // 关键修改 // 6. 写入文件并同步 f_write(&log_file, log_line, strlen(log_line), &bw); f_sync(&log_file); // 确保数据写入SD卡 f_close(&log_file); } /*----------------------------------------------------------------------------------------------------------*/ //查看配置参数 void usmart_view_config(void) { FIL file; FRESULT fr; char buffer[2048]; // 缓冲区,根据配置文件可能的大小调整 UINT br; DWORD pos = 0; // 打开文件 fr = f_open(&file, "0:config.txt", FA_READ); if (fr != FR_OK) { printf("config2.va1.txt=\"Open config.txt failed! Error: %d\r\n\"\xff\xff\xff", fr); USART_ClearBuffer(); return; } // 确定读取位置(配置文件通常需全量显示,从开头读取) pos = 0; f_lseek(&file, pos); // 读取文件内容到缓冲区(最多读取缓冲区大小) f_read(&file, buffer, sizeof(buffer) - 1, &br); // 留1字节给结束符 buffer[br] = '\0'; // 添加字符串结束符 // 打印配置文件内容 printf("config2.va1.txt=\"设备配置参数:\r\n%s\r\n\"\xff\xff\xff", buffer); delay_ms(5); // 关闭文件 f_close(&file); USART_ClearBuffer(); } // 参数: 配置项名称(字符串)、新值(整数) void setParam(const char* param_name, int32_t value) { if (strcmp(param_name, "T_FIX") == 0) g_config.t_fix = value; else if (strcmp(param_name, "T_RINSE") == 0) g_config.t_rinse = value; else if (strcmp(param_name, "T_ACID") == 0) g_config.t_acid = value; else if (strcmp(param_name, "T_STAIN") == 0) g_config.t_stain = value; else if (strcmp(param_name, "T_DEHY1") == 0) g_config.t_dehy1 = value; else if (strcmp(param_name, "T_DEHY2") == 0) g_config.t_dehy2 = value; else if (strcmp(param_name, "T_DEHY3") == 0) g_config.t_dehy3 = value; else if (strcmp(param_name, "T_DEHY4") == 0) g_config.t_dehy4 = value; else if (strcmp(param_name, "T_DRY") == 0) g_config.t_dry = value; else if (strcmp(param_name, "X_POS1") == 0) g_config.x_pos1 = value; else if (strcmp(param_name, "X_POS2") == 0) g_config.x_pos2 = value; else if (strcmp(param_name, "X_POS3") == 0) g_config.x_pos3 = value; else if (strcmp(param_name, "X_POS4") == 0) g_config.x_pos4 = value; else if (strcmp(param_name, "X_POS5") == 0) g_config.x_pos5 = value; else if (strcmp(param_name, "X_POS6") == 0) g_config.x_pos6 = value; else if (strcmp(param_name, "X_POS7") == 0) g_config.x_pos7 = value; else if (strcmp(param_name, "X_POS8") == 0) g_config.x_pos8 = value; else if (strcmp(param_name, "X_POS9") == 0) g_config.x_pos9 = value; else if (strcmp(param_name, "X_POS10") == 0) g_config.x_pos10 = value; else if (strcmp(param_name, "Z_LIFT") == 0) g_config.z_lift = value; else if (strcmp(param_name, "Z_LIFT1") == 0) g_config.z_lift1 = value; else if (strcmp(param_name, "Z_SOAK") == 0) g_config.z_soak = value; else if (strcmp(param_name, "X_OFFSET") == 0) { delay_ms(10); g_config.x_offset = value; g_config.x_pos2 = g_config.x_pos2+value; g_config.x_pos3 = g_config.x_pos3+value; g_config.x_pos4 = g_config.x_pos4+value; g_config.x_pos5 = g_config.x_pos5+value; g_config.x_pos6 = g_config.x_pos6+value; g_config.x_pos7 = g_config.x_pos7+value; g_config.x_pos8 = g_config.x_pos8+value; g_config.x_pos9 = g_config.x_pos9+value; g_config.x_pos10 = g_config.x_pos10+value; delay_ms(10); } // 其他参数... else { printf("config2.t0.txt=\"请检查参数,输入无效\"\xff\xff\xff"); USART_ClearBuffer(); return; } write_config_to_sd(&g_config); } //////查看log文件后10行 void usmart_view_log(void) { FIL file; FRESULT fr; char buffer[2048]; UINT br; DWORD file_size, pos; int line_count = 0; fr = f_open(&file, "0:log.txt", FA_READ); if (fr != FR_OK) { printf("config3.va0.txt=\"Open log.txt failed! Error: %d\r\n\"\xff\xff\xff", fr); USART_ClearBuffer(); return; } file_size = f_size(&file); // 从文件末尾向前查找10行 pos = file_size < sizeof(buffer) ? 0 : file_size - sizeof(buffer); f_lseek(&file, pos); f_read(&file, buffer, sizeof(buffer), &br); buffer[br] = '\0'; // 从后往前统计行数 for (int i = br - 1; i >= 0; i--) { if (buffer[i] == '\n') { line_count++; if (line_count >= 30) { pos = i + 1; break; } } } // 打印找到的内容 if (line_count < 20) pos = 0; // 如果不足10行则从头开始 printf("config3.va0.txt=\"\r\n%s\r\n\"\xff\xff\xff",buffer + pos); USART_ClearBuffer(); f_close(&file); } //删除log文件 void delete_log(void) { delay_ms(50); u8 ret = mf_unlink("log.txt"); if (ret == FR_OK) { printf("config3.t0.txt=\"日志删除成功\r\n日志删除成功\r\n\"\xff\xff\xff"); } else { printf("config3.t0.txt=\"日志删除失败\r\n日志删除失败\r\n\"\xff\xff\xff"); } } /*----------------------------------------------------------------------------------------------------------*/ void moveX(int32_t steps) { moveAxisCommon(AXIS_X,steps); } void moveZ(int32_t steps) { moveAxisCommon(AXIS_Z,steps); } /*----------------------------------------------------------------------------------------------------------*/ // 移动到指定染缸(1-9) void moveToTank(uint8_t tank_num) { if (tank_num < 1 || tank_num > 9) { OLED_ShowString(4,1,"Invalid Tank"); return; } // 获取目标缸X坐标 int32_t target_x = 0; switch(tank_num) { case 1: target_x = g_config.x_pos1; break; case 2: target_x = g_config.x_pos2; break; case 3: target_x = g_config.x_pos3; break; case 4: target_x = g_config.x_pos4; break; case 5: target_x = g_config.x_pos5; break; case 6: target_x = g_config.x_pos6; break; case 7: target_x = g_config.x_pos7; break; case 8: target_x = g_config.x_pos8; break; case 9: target_x = g_config.x_pos9; break; } // X轴移动到目标位置 int32_t x_steps = target_x - x_current_position; delay_ms(10); moveAxisCommon(AXIS_X, x_steps);//1 // Z轴下降() moveAxisCommon(AXIS_Z, g_config.z_lift);//2 } /*----------------------------------------------------------------------------------------------------------*/ // 染色流程状态机处理函数(在主循环中调用,非阻塞) void process_auto_stain(void) { if (g_stain_state == STAIN_IDLE) return; // 空闲状态不处理 get_sys_time_s(); uint32_t elapsed_ms = sys_time_s - g_delay_start_tick; // 已过去的时间 switch (g_stain_state) { // -------------------------- 步骤1:等待放入染架 -------------------------- case STAIN_STEP1_WAIT_LOAD_INIT: printf("move.t0.txt=\"请放入染架到固定缸\"\xff\xff\xff"); g_delay_start_tick = sys_time_s; // 记录开始时间 g_current_delay_s = 3; // 等待 g_stain_state = STAIN_STEP1_WAIT_LOAD_DELAY; // 进入延时状态 break; case STAIN_STEP1_WAIT_LOAD_DELAY: if (elapsed_ms >= g_current_delay_s) { // 等待结束,进入固定缸初始化 g_stain_state = STAIN_STEP1_FIX_INIT; } break; // -------------------------- 步骤1:固定缸(1#) -------------------------- case STAIN_STEP1_FIX_INIT: printf("move.t2.bco=1024\xff\xff\xff"); g_delay_start_tick = sys_time_s; // 记录开始时间 g_current_delay_s = g_config.t_fix; // 目标延时(用户配置) g_stain_state = STAIN_STEP1_FIX_DELAY; // 进入延时状态 printf("move.t0.txt=\"固定剩余时间:\"\xff\xff\xff"); printf("move.tm1.en=1\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); break; case STAIN_STEP1_FIX_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm1.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP1_FIX_DONE; } break; case STAIN_STEP1_FIX_DONE: // 执行移动操作(非阻塞,假设moveAxisCommon内部已处理等待) printf("move.t0.txt=\"移动到冲洗缸\"\xff\xff\xff"); moveAxisCommon(AXIS_X, g_config.x_pos1); moveAxisCommon(AXIS_Z, g_config.z_lift); Xmove_right2(); //右移小距离,抓住染架 Zmove_up(); g_stain_state = STAIN_STEP2_RINSE_INIT; // 进入下一步 break; // -------------------------- 步骤2:冲洗缸(4#) -------------------------- case STAIN_STEP2_RINSE_INIT: printf("move.t8.bco=1024\xff\xff\xff"); moveToTank(4); // 移动到冲洗缸 up_down(); // 执行上下动作 g_delay_start_tick = sys_time_s; //这里不是current_tick,是因为运动会阻塞函数,无法运行 uint32_t current_tick = sys_time_s;获取当前时间 g_current_delay_s = g_config.t_rinse; // 冲洗延时 g_stain_state = STAIN_STEP2_RINSE_DELAY; printf("move.t0.txt=\"冲洗剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm2.en=1\xff\xff\xff"); break; case STAIN_STEP2_RINSE_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm2.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP2_RINSE_DONE; } break; case STAIN_STEP2_RINSE_DONE: printf("move.t0.txt=\"移动到酸化缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP3_ACID_INIT; // 进入酸化缸 break; // -------------------------- 步骤3:酸化缸(2#) -------------------------- case STAIN_STEP3_ACID_INIT: printf("move.t4.bco=1024\xff\xff\xff"); moveToTank(2); // 移动到酸化缸 g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_acid; // 酸化延时 g_stain_state = STAIN_STEP3_ACID_DELAY; printf("move.t0.txt=\"酸化剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm3.en=1\xff\xff\xff"); break; case STAIN_STEP3_ACID_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); printf("move.tm3.en=0\xff\xff\xff"); g_stain_state = STAIN_STEP3_ACID_DONE; } break; case STAIN_STEP3_ACID_DONE: printf("move.t0.txt=\"移动到冲洗缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP4_RINSE_INIT; // 进入冲洗缸 break; // -------------------------- 步骤4:冲洗缸(4#) -------------------------- case STAIN_STEP4_RINSE_INIT: printf("move.t8.bco=1024\xff\xff\xff"); moveToTank(4); // 移动到冲洗缸 up_down(); g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_rinse; // 冲洗延时 g_stain_state = STAIN_STEP4_RINSE_DELAY; printf("move.t0.txt=\"冲洗剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.va3.val=%d\xff\xff\xff",g_config.t_rinse); printf("move.tm2.en=1\xff\xff\xff"); break; case STAIN_STEP4_RINSE_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm2.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP4_RINSE_DONE; } break; case STAIN_STEP4_RINSE_DONE: printf("move.t0.txt=\"移动到染色缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP5_STAIN_INIT; // 进入染色缸 break; // -------------------------- 步骤5:染色缸(3#) -------------------------- case STAIN_STEP5_STAIN_INIT: printf("move.t6.bco=1024\xff\xff\xff"); moveToTank(3); // 移动到染色缸 g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_stain; // 染色延时 g_stain_state = STAIN_STEP5_STAIN_DELAY; printf("move.t0.txt=\"染色剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm4.en=1\xff\xff\xff"); break; case STAIN_STEP5_STAIN_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm4.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP5_STAIN_DONE; } break; case STAIN_STEP5_STAIN_DONE: printf("move.t0.txt=\"移动到冲洗缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP6_RINSE_INIT; // 进入冲洗缸 break; // -------------------------- 步骤6:冲洗缸(4#) -------------------------- case STAIN_STEP6_RINSE_INIT: printf("move.t8.bco=1024\xff\xff\xff"); moveToTank(4); // 移动到冲洗缸 up_down(); g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_rinse; // 冲洗延时 g_stain_state = STAIN_STEP6_RINSE_DELAY; printf("move.va3.val=%d\xff\xff\xff",g_config.t_rinse); printf("move.t0.txt=\"冲洗剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm2.en=1\xff\xff\xff"); break; case STAIN_STEP6_RINSE_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm2.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP6_RINSE_DONE; } break; case STAIN_STEP6_RINSE_DONE: printf("move.t0.txt=\"移动到梯度脱水1缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP7_DEHY1_INIT; // 进入脱水1 break; // -------------------------- 步骤7:梯度脱水1(5#) -------------------------- case STAIN_STEP7_DEHY1_INIT: printf("move.t10.bco=1024\xff\xff\xff"); moveToTank(5); // 移动到脱水1缸 g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_dehy1; // 脱水1延时 g_stain_state = STAIN_STEP7_DEHY1_DELAY; printf("move.t0.txt=\"梯度脱水1剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm5.en=1\xff\xff\xff"); break; case STAIN_STEP7_DEHY1_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm5.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP7_DEHY1_DONE; } break; case STAIN_STEP7_DEHY1_DONE: printf("move.t0.txt=\"移动到梯度脱水2缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP8_DEHY2_INIT; // 进入脱水2 break; // -------------------------- 步骤8:梯度脱水2(6#) -------------------------- case STAIN_STEP8_DEHY2_INIT: printf("move.t12.bco=1024\xff\xff\xff"); moveToTank(6); // 移动到脱水2缸 g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_dehy2; // 脱水2延时 g_stain_state = STAIN_STEP8_DEHY2_DELAY; printf("move.t0.txt=\"梯度脱水2剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm6.en=1\xff\xff\xff"); break; case STAIN_STEP8_DEHY2_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm6.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP8_DEHY2_DONE; } break; case STAIN_STEP8_DEHY2_DONE: printf("move.t0.txt=\"移动到梯度脱水3缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP9_DEHY3_INIT; // 进入脱水3 break; // -------------------------- 步骤9:梯度脱水3(7#) -------------------------- case STAIN_STEP9_DEHY3_INIT: printf("move.t14.bco=1024\xff\xff\xff"); moveToTank(7); // 移动到脱水3缸 g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_dehy3; // 脱水3延时 g_stain_state = STAIN_STEP9_DEHY3_DELAY; printf("move.t0.txt=\"梯度脱水3剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm7.en=1\xff\xff\xff"); break; case STAIN_STEP9_DEHY3_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm7.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP9_DEHY3_DONE; } break; case STAIN_STEP9_DEHY3_DONE: printf("move.t0.txt=\"移动到梯度脱水4缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP10_DEHY4_INIT; // 进入脱水4 break; // -------------------------- 步骤10:梯度脱水4(8#) -------------------------- case STAIN_STEP10_DEHY4_INIT: printf("move.t16.bco=1024\xff\xff\xff"); moveToTank(8); // 移动到脱水4缸 g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_dehy4; // 脱水4延时 g_stain_state = STAIN_STEP10_DEHY4_DELAY; printf("move.t0.txt=\"梯度脱水4剩余时间:\"\xff\xff\xff"); printf("move.t25.aph=127\xff\xff\xff"); printf("move.t26.aph=127\xff\xff\xff"); printf("move.tm8.en=1\xff\xff\xff"); break; case STAIN_STEP10_DEHY4_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm8.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP10_DEHY4_DONE; } break; case STAIN_STEP10_DEHY4_DONE: printf("move.t0.txt=\"移动到梯度晾片缸\"\xff\xff\xff"); Zmove_up(); g_stain_state = STAIN_STEP11_DRY_INIT; // 进入晾片缸 break; // -------------------------- 步骤11:晾片缸(9#) -------------------------- case STAIN_STEP11_DRY_INIT: printf("move.t18.bco=1024\xff\xff\xff"); printf("move.t0.txt=\"晾片\"\xff\xff\xff"); moveToTank(9); // 移动到晾片缸 printf("move.tm11.en=1\xff\xff\xff"); g_delay_start_tick = sys_time_s; g_current_delay_s = g_config.t_dry; // 晾片延时 g_stain_state = STAIN_STEP11_DRY_DELAY; break; case STAIN_STEP11_DRY_DELAY: if (elapsed_ms >= g_current_delay_s) { printf("move.t25.txt=\"0\"\xff\xff\xff"); printf("move.tm11.en=0\xff\xff\xff"); printf("move.t25.aph=0\xff\xff\xff"); printf("move.t26.aph=0\xff\xff\xff"); g_stain_state = STAIN_STEP11_DRY_DONE; } break; case STAIN_STEP11_DRY_DONE: Xmove_left(); // 脱离晾片缸 g_stain_state = STAIN_FINISH; // 流程结束 break; // -------------------------- 流程结束 -------------------------- case STAIN_FINISH: printf("move.t0.txt=\"染色完成,请移走染架\"\xff\xff\xff"); g_stain_state = STAIN_IDLE; // 重置为空闲状态 break; default: g_stain_state = STAIN_IDLE; // 异常状态重置 break; } } /*----------------------------------------------------------------------------------------------------------*/ // 优化后的X轴移动函数 void Xmove_left(void) { delay_ms(10); moveAxisCommon(AXIS_X,g_config.x_pos1);//最后一次移动距离,脱离晾片缸 } void Xmove_right(void) { delay_ms(10); moveAxisCommon(AXIS_X,-g_config.x_pos1); } void Xmove_right2(void) { delay_ms(10); moveAxisCommon(AXIS_X,-g_config.x_pos10);//距离是需要右移或者左移抓染架的距离 } void Xmove_left2(void) { delay_ms(10); moveAxisCommon(AXIS_X,g_config.x_pos10);//距离是需要右移或者左移抓染架的距离 } // 优化后的Z轴移动函数 void Zmove_down(void) { delay_ms(10); moveAxisCommon(AXIS_Z,g_config.z_lift); } void Zmove_down_2(void) { delay_ms(10); moveAxisCommon(AXIS_Z,g_config.z_soak); } void Zmove_up(void) { delay_ms(10); moveAxisCommon(AXIS_Z,-g_config.z_lift); } void Zmove_up_2(void) { delay_ms(10); moveAxisCommon(AXIS_Z,-g_config.z_soak); } void up_down(void) { delay_ms(10); Zmove_up_2(); delay_ms(100); Zmove_down_2(); Zmove_up_2(); delay_ms(100); Zmove_down_2(); } /*----------------------------------------------------------------------------------------------------------*/ //一直移动函数GUI界面函数 // 处理触摸屏指令 void touch_command_process(uint8_t cmd) { switch(cmd) { case TOUCH_X_LEFT_PRESS: x_left_running = 1; x_right_running = 0; break; case TOUCH_X_LEFT_RELEASE: if(x_left_running) { motor_stop(AXIS_X); x_left_running = 0; } break; case TOUCH_X_RIGHT_PRESS: x_right_running = 1; x_left_running = 0; break; case TOUCH_X_RIGHT_RELEASE: if(x_right_running) { motor_stop(AXIS_X); x_right_running = 0; } break; case TOUCH_Z_UP_PRESS: z_up_running = 1; z_down_running = 0; break; case TOUCH_Z_UP_RELEASE: if(z_up_running) { motor_stop(AXIS_Z); z_up_running = 0; } break; case TOUCH_Z_DOWN_PRESS: z_down_running = 1; z_up_running = 0; break; case TOUCH_Z_DOWN_RELEASE: if(z_down_running) { motor_stop(AXIS_Z); z_down_running = 0; } break; case STAIN_STEP1_WAIT_LOAD_INIT_USART: if (g_stain_state == STAIN_IDLE) { g_stain_state = STAIN_STEP1_WAIT_LOAD_INIT; // 从第一步开始 } break; case STAIN_IDLE_USART: GPIO_SetBits(X_ENA_PORT, X_ENA_PIN); // 高电平禁用 GPIO_SetBits(Z_ENA_PORT, Z_ENA_PIN); reinitialize_system(); break; } } // 电机连续移动函数 void motor_continuous_move(AxisType axis, int32_t direction) { if(axis == AXIS_X) { if(!x_motor_running) { // 设置一个较大的目标步数实现连续移动 moveAxisCommon(AXIS_X, direction * 10000000); } } else if(axis == AXIS_Z) { if(!z_motor_running) { moveAxisCommon(AXIS_Z, direction * 10000000); } } } // 电机停止函数 void motor_stop(AxisType axis) { if(axis == AXIS_X) { x_motor_running = 0; disableMotor(AXIS_X); } else if(axis == AXIS_Z) { z_motor_running = 0; disableMotor(AXIS_Z); } } /*----------------------------------------------------------------------------------------------------------*/ void X_home(void) { Home_Motor(AXIS_X); } void Z_home(void) { Home_Motor(AXIS_Z); } /*----------------------------------------------------------------------------------------------------------*/ //初始化SD配置文件 void SD_config_init(void) { fr = f_open(&config_file, "0:config.txt", FA_READ); if (fr == FR_OK) { read_config_from_sd(&g_config); delay_ms(10); f_close(&config_file); } else { printf("not find config"); delay_ms(10); } fr = f_open(&log_file, "0:log.txt", FA_READ | FA_OPEN_ALWAYS); f_close(&log_file); } /*----------------------------------------------------------------------------------------------------------*/ /** * 读取温度状态并更新(仅在状态变化时执行操作) */ void prin_temp(void) { // 读取温度(已转为整数) int32_t current_temp = (int32_t)(SMBus_ReadTemp()); // 仅当当前温度与历史值不同时,才执行更新(避免无效操作) if (current_temp != last_temp) { if(current_temp < 150 && current_temp > -10) { // 调用公共函数更新显示和发送数据 printf("home.va0.val=%d\xff\xff\xff", current_temp); OLED_ShowNum(3,4, current_temp, 2); // 显示温度(占3位,适应更大数值) OLED_ShowString(3,6,"C"); OLED_ShowString(3,1,"T1:"); last_temp = current_temp; // 更新历史值 USART_ClearBuffer(); } } } /** * 读取温度状态并更新(仅在状态变化时执行操作) */ void prin_temp2(void) { // 读取温度(已转为整数) int32_t current_temp2 = (int32_t)DS18B20_Get_Temp()/ 10.0f; // 仅当当前温度与历史值不同时,才执行更新(避免无效操作) if (current_temp2 != last_temp2) { if(current_temp2 < 150 && last_temp2 > -10){ // 调用公共函数更新显示和发送数据 printf("home.va1.val=%d\xff\xff\xff", current_temp2); OLED_ShowNum(3,12, current_temp2, 2); // 显示温度(占3位,适应更大数值) OLED_ShowString(3,14,"C"); OLED_ShowString(3,9,"T2:"); last_temp2 = current_temp2; // 更新历史值 USART_ClearBuffer(); } } } /** * 读取液位状态并更新(仅在状态变化时执行操作) */ void print_level(void) { // 读取液位状态 uint8_t current_level = LevelSensor_GetState(); if(current_level==1)//出水,模式 { close_rinse_input(); open_rinse_output(); } if(current_level==0)//进水,判断,水满信号位置1 { open_rinse_input(); close_rinse_output(); } // 仅当当前状态与历史值不同时,才执行更新 if (current_level != last_level) { // 调用公共函数更新显示和发送数据 printf("move.va1.val=%d\xff\xff\xff", current_level); OLED_ShowString(1,1,"water_leve:"); OLED_ShowNum(1,14,current_level, 2); // 显示液位状态 last_level = current_level; // 更新历史值 USART_ClearBuffer(); } } /*----------------------------------------------------------------------------------------------------------*/ void moveAxisCommon(AxisType axis, int32_t target_steps) { delay_ms(10); // 启动带加速度的运动(假设此函数仅启动运动,不阻塞) moveStepsWithAccel(axis, target_steps); // 立即更新OLED显示(运动开始时的位置) OLED_ShowNum(2, 9, x_current_position, 7); OLED_ShowNum(4, 9, z_current_position, 7); while ((axis == AXIS_X && x_motor_running) || (axis == AXIS_Z && z_motor_running)) { delay_ms(1); // 短延迟,降低CPU占用 } delay_ms(10); // 稳定延迟 // 5. 写日志与显示 write_log(x_current_position, z_current_position); } /*--------------------------------------------------------------------------------------------------------------------------------*/ // 安全清理函数:释放资源,停止外设 void safe_cleanup(void) { // 1. 停止电机运动 motor_stop(AXIS_X); motor_stop(AXIS_Z); x_left_running = 0; x_right_running = 0; z_up_running = 0; z_down_running = 0; // 2. 关闭文件系统相关资源 f_close(&step_file); f_close(&log_file); f_close(&config_file); f_mount(NULL, "0:", 1); // 卸载SD卡 f_mount(NULL, "1:", 1); // 卸载FLASH // 3. 重置状态机和全局变量 g_stain_state = STAIN_IDLE; g_delay_start_tick = 0; g_current_delay_s = 0; // 4. 清空OLED显示 OLED_Clear(); delay_ms(500); } // 重新初始化函数(复用main中的初始化逻辑) void reinitialize_system(void) { safe_cleanup(); // 先清理资源 // 重新执行初始化(完全复用main中的初始化步骤) delay_init(72); delay_ms(10); OLED_Init(); OLED_Clear(); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); StepMotor_GPIO_Init(AXIS_X); StepMotor_GPIO_Init(AXIS_Z); StepMotor_TIM_Init(AXIS_X); StepMotor_TIM_Init(AXIS_Z); delay_ms(10); my_mem_init(SRAMIN); delay_ms(10); SMBus_Init(); delay_ms(10); LevelSensor_Init(); delay_ms(10); DS18B20_Init(); delay_ms(10); // 重新初始化SD卡(带重试) while(SD_Init()) { OLED_ShowString(2, 1, "SD Error, Retry..."); delay_ms(1000); } delay_ms(10); // 重新初始化文件系统 while(exfuns_init()) { OLED_ShowString(2, 1, "FS Error, Retry..."); delay_ms(1000); } f_mount(fs[0], "0:", 1); f_mount(fs[1], "1:", 1); delay_ms(10); // 重新初始化串口和USMART USART1_Init(115200); delay_ms(10); usmart_dev.init(72); delay_ms(10); // 重新初始化RTC RTC_Init(); delay_ms(10); // 重新加载配置 SD_config_init(); delay_ms(10); // 重新初始化限位开关 LimitSwitch_Init(); CheckLimitSwitches(); delay_ms(10); /*************************开机初始化将配置参数传到move页面***************************************/ printf("move.va2.val=%d\xff\xff\xff",g_config.t_fix); printf("move.va3.val=%d\xff\xff\xff",g_config.t_rinse); printf("move.va4.val=%d\xff\xff\xff",g_config.t_acid); printf("move.va5.val=%d\xff\xff\xff",g_config.t_stain); printf("move.va6.val=%d\xff\xff\xff",g_config.t_dehy1); printf("move.va7.val=%d\xff\xff\xff",g_config.t_dehy2); printf("move.va8.val=%d\xff\xff\xff",g_config.t_dehy3); printf("move.va9.val=%d\xff\xff\xff",g_config.t_dehy4); printf("move.va10.val=%d\xff\xff\xff",g_config.t_dry); /***********************************************************************************************/ OLED_Clear(); printf("系统重新初始化完成\xFF\xFF\xFF"); delay_ms(1000); OLED_Clear(); } /*--------------------------------------------------------------------------------------------------------------------------------*/ int main(void) { int a=0; //温度循环值初始,1秒检测一次 g_stain_state = STAIN_IDLE; //初始化为空闲状态,状态机 delay_init(72); delay_ms(1000); OLED_Init(); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);//设置中断优先级分组为组0 StepMotor_GPIO_Init(AXIS_X); StepMotor_GPIO_Init(AXIS_Z); StepMotor_TIM_Init(AXIS_X); StepMotor_TIM_Init(AXIS_Z); delay_ms(10); my_mem_init(SRAMIN); //初始化内部内存池 delay_ms(10); SMBus_Init(); // 初始化SMBus总线(用于MLX90614通信) delay_ms(10); LevelSensor_Init(); // 初始化液面传感器 delay_ms(10); DS18B20_Init(); // 初始化DS18B20温度传感器 delay_ms(10); while(SD_Init()) //检测不到SD卡,SDIO初始化 { OLED_ShowString(1,1,"SD Card Error!"); printf("SD Card Error!"); delay_ms(100); OLED_ShowString(1,1,"Please Check! "); delay_ms(100); } delay_ms(10); while(exfuns_init()) //FAFTS文件系统是否挂载失败 { OLED_ShowString(1,1," exfuns_init Error!"); printf("exfuns_init Error!"); delay_ms(1000); } f_mount(fs[0],"0:",1); //挂载SD卡 f_mount(fs[1],"1:",1); //挂载FLASH. /*************************初始化USMART通信********************************************************/ delay_ms(10); USART1_Init(115200); //串口初始化为115200 delay_ms(10); usmart_dev.init(72); //串口通信初始化 delay_ms(10); /*************************初始化RTC初始化********************************************************/ RTC_Init(); //RTC初始化 delay_ms(10); SD_config_init(); //初始化,将config文件的参数一次性更新到程序里 delay_ms(10); LimitSwitch_Init(); //运动限位最后初始化。 CheckLimitSwitches(); //检查限位,复位限位 OLED_Clear(); //oled显示屏幕清空 // Home_Motor(AXIS_Z); //初始化Z轴,Z轴回零 // Home_Motor(AXIS_X); //初始化X轴,X轴回零 OLED_Clear(); //清空屏幕 /*************************开机初始化将配置参数传到move页面***************************************/ printf("move.va2.val=%d\xff\xff\xff",g_config.t_fix); printf("move.va3.val=%d\xff\xff\xff",g_config.t_rinse); printf("move.va4.val=%d\xff\xff\xff",g_config.t_acid); printf("move.va5.val=%d\xff\xff\xff",g_config.t_stain); printf("move.va6.val=%d\xff\xff\xff",g_config.t_dehy1); printf("move.va7.val=%d\xff\xff\xff",g_config.t_dehy2); printf("move.va8.val=%d\xff\xff\xff",g_config.t_dehy3); printf("move.va9.val=%d\xff\xff\xff",g_config.t_dehy4); printf("move.va10.val=%d\xff\xff\xff",g_config.t_dry); /***********************************************************************************************/ while (1) { process_auto_stain(); if(x_left_running) { motor_continuous_move(AXIS_X, 1); // X轴左移 } if(x_right_running) { motor_continuous_move(AXIS_X, -1); // X轴右移 } if(z_up_running) { motor_continuous_move(AXIS_Z, -1); // Z轴上移 } if(z_down_running) { motor_continuous_move(AXIS_Z, 1); // Z轴下移 } a++; //累加计数 if(a==800){ prin_temp(); prin_temp2(); a=0; } print_level(); delay_ms(2); // 主循环基础延时(保持不变) } } 为什么初始化SD卡时容易失败
最新发布
10-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值