SoTimerSensor with rotation animation

双计时器示例

/*-------------------------------------------------------------- * Timer sensors. An object is rotated by a timer sensor. * (called "rotatingSensor"). The interval between calls * controls how often it rotates. * A second timer (called "schedulingSensor") goes off * every 5 seconds and changes the interval of * "rotatingSensor". The interval alternates between * once per second and 10 times per second. * This example could also be done using engines. *------------------------------------------------------------*/ #include <Inventor/SoDB.h> #include <Inventor/Win/SoWin.h> #include <Inventor/Win/viewers/SoWinExaminerViewer.h> #include <Inventor/nodes/SoCone.h> #include <Inventor/nodes/SoRotation.h> #include <Inventor/nodes/SoSeparator.h> #include <Inventor/nodes/SoTransform.h> #include <Inventor/sensors/SoTimerSensor.h> #ifdef WIN32 # include "print.h" #endif /////////////////////////////////////////////////////////// // CODE FOR The Inventor Mentor STARTS HERE // This function is called either 10 times/second or once every // second; the scheduling changes every 5 seconds (see below): static void rotatingSensorCallback(void *data, SoSensor *) { // Rotate an object... SoRotation *myRotation = (SoRotation *)data; SbRotation currentRotation = myRotation->rotation.getValue(); currentRotation = SbRotation(SbVec3f(0.0f, 0.0f, 1.0f), (float)(M_PI/90.0f)) * currentRotation; myRotation->rotation.setValue(currentRotation); } // This function is called once every 5 seconds, and // reschedules the other sensor. static void schedulingSensorCallback(void *data, SoSensor *) { SoTimerSensor *rotatingSensor = (SoTimerSensor *)data; rotatingSensor->unschedule(); if (rotatingSensor->getInterval() == 1.0f) rotatingSensor->setInterval(1.0f/10.0f); else rotatingSensor->setInterval(1.0f); rotatingSensor->schedule(); } // CODE FOR The Inventor Mentor ENDS HERE /////////////////////////////////////////////////////////// int main(int argc, char **argv) { if (argc != 2) { fprintf(stderr, "Usage: %s filename.iv/n", argv[0]); exit(1); } HWND myWindow = SoWin::init(argv[0]); if (myWindow == NULL) exit(1); SoSeparator *root = new SoSeparator; root->ref(); /////////////////////////////////////////////////////////// // CODE FOR The Inventor Mentor STARTS HERE SoRotation *myRotation = new SoRotation; root->addChild(myRotation); SoTimerSensor *rotatingSensor = new SoTimerSensor(rotatingSensorCallback, myRotation); rotatingSensor->setInterval(1.0f); // scheduled once per second rotatingSensor->schedule(); SoTimerSensor *schedulingSensor = new SoTimerSensor(schedulingSensorCallback, rotatingSensor); schedulingSensor->setInterval(5.0f); // once per 5 seconds schedulingSensor->schedule(); // CODE FOR The Inventor Mentor ENDS HERE /////////////////////////////////////////////////////////// SoInput inputFile; if (inputFile.openFile(argv[1]) == FALSE) { fprintf(stderr, "Could not open file %s/n", argv[1]); exit(1); } root->addChild(SoDB::readAll(&inputFile)); SoWinExaminerViewer *myViewer = new SoWinExaminerViewer(myWindow); myViewer->setSceneGraph(root); myViewer->setTitle("Two Timers"); myViewer->show(); SoWin::show(myWindow); // Display main window SoWin::mainLoop(); // Main Inventor event loop return 0; }

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值