Java自带的字符串hash函数:
public int hashCode() {
int h = hash;
if (h == 0) {
int off = offset;
char val[] = value;
int len = count;
for (int i = 0; i < len; i++) {
h = 31*h + val[off++];
}
hash = h;
}
return h;
}
在对一个79w的字符串进行Hash计算时,发现有40多条记录碰撞,修改了一下,让返回是long,发现没有碰撞了。
public static long hash(String s){
long seed = 131; // 31 131 1313 13131 131313 etc.. BKDRHash
long hash=0;
for (int i = 0; i< s.length(); i++){
hash = (hash * seed) + s.charAt(i);
}
return hash;
}
以下内容为转载:
常用的字符串Hash函数还有ELFHash,APHash等等,都是十分简单有效的方法。这些函数使用位运算使得每一个字符都对最后的函数值产生影响。另外还有以MD5和SHA1为代表的杂凑函数,这些函数几乎不可能找到碰撞。
常用字符串哈希函数有BKDRHash,APHash,DJBHash,JSHash,RSHash,SDBMHash,PJWHash,ELFHash等等。对于以上几种哈希函数,我对其进行了一个小小的评测。
Hash函数 数据1 数据2 数据3 数据4 数据1得分 数据2得分 数据3得分 数据4得分 平均分 BKDRHash 2 0 4774 481 96.55 100 90.95 82.05 92.64 APHash 2 3 4754 493 96.55 88.46 100 51.28 86.28 DJBHash 2 2 4975 474 96.55 92.31 0 100 83.43 JSHash 1 4 4761 506 100 84.62 96.83 17.95 81.94 RSHash 1 0 4861 505 100 100 51.58 20.51 75.96 SDBMHash 3 2 4849 504 93.1 92.31 57.01 23.08 72.41 PJWHash 30 26 4878 513 0 0 43.89 0 21.95 ELFHash 30 26 4878 513 0 0 43.89 0 21.95
其中数据1为100000个字母和数字组成的随机串哈希冲突个数。
数据2为100000个有意义的英文句子哈希冲突个数。
数据3为数据1的哈希值与1000003(大素数)求模后存储到线性表中冲突的个数。
数据4为数据1的哈希值与10000019(更大素数)求模后存储到线性表中冲突的个数。
经过比较,得出以上平均得分。平均数为平方平均数。可以发现,BKDRHash无论是在实际效果还是编码实现中,效果都是最突出的。APHash也是较为优秀的算法。DJBHash,JSHash,RSHash与SDBMHash各有千秋。PJWHash与ELFHash效果最差,但得分相似,其算法本质是相似的。
在信息修竞赛中,要本着易于编码调试的原则,个人认为BKDRHash是最适合记忆和使用的。
附:各种哈希函数的C语言程序代码
unsigned int SDBMHash(char *str)
{
unsigned int hash = 0;
while (*str)
{
// equivalent to: hash = 65599*hash + (*str++);
hash = (*str++) + (hash << 6) + (hash << 16) - hash;
}
return (hash & 0x7FFFFFFF);
}
// RS Hash
unsigned int RSHash(char *str)
{
unsigned int b = 378551;
unsigned int a = 63689;
unsigned int hash = 0;
while (*str)
{
hash = hash * a + (*str++);
a *= b;
}
return (hash & 0x7FFFFFFF);
}
// JS Hash
unsigned int JSHash(char *str)
{
unsigned int hash = 1315423911;
while (*str)
{
hash ^= ((hash << 5) + (*str++) + (hash >> 2));
}
return (hash & 0x7FFFFFFF);
}
// P. J. Weinberger Hash
unsigned int PJWHash(char *str)
{
unsigned int BitsInUnignedInt = (unsigned int)(sizeof(unsigned int) * 8);
unsigned int ThreeQuarters = (unsigned int)((BitsInUnignedInt * 3) / 4);
unsigned int OneEighth = (unsigned int)(BitsInUnignedInt / 8);
unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnignedInt
- OneEighth);
unsigned int hash = 0;
unsigned int test = 0;
while (*str)
{
hash = (hash << OneEighth) + (*str++);
if ((test = hash & HighBits) != 0)
{
hash = ((hash ^ (test >> ThreeQuarters)) & (~HighBits));
}
}
return (hash & 0x7FFFFFFF);
}
// ELF Hash
unsigned int ELFHash(char *str)
{
unsigned int hash = 0;
unsigned int x = 0;
while (*str)
{
hash = (hash << 4) + (*str++);
if ((x = hash & 0xF0000000L) != 0)
{
hash ^= (x >> 24);
hash &= ~x;
}
}
return (hash & 0x7FFFFFFF);
}
// BKDR Hash
unsigned int BKDRHash(char *str)
{
unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
unsigned int hash = 0;
while (*str)
{
hash = hash * seed + (*str++);
}
return (hash & 0x7FFFFFFF);
}
// DJB Hash
unsigned int DJBHash(char *str)
{
unsigned int hash = 5381;
while (*str)
{
hash += (hash << 5) + (*str++);
}
return (hash & 0x7FFFFFFF);
}
// AP Hash
unsigned int APHash(char *str)
{
unsigned int hash = 0;
int i;
for (i=0; *str; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ (*str++) ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ (*str++) ^ (hash >> 5)));
}
}
return (hash & 0x7FFFFFFF);
}
本文对比分析了多种字符串哈希函数(如BKDRHash、APHash等)在不同场景下的性能表现,包括随机字符串和英文句子的哈希冲突情况,并评估了哈希值在大素数取模后的冲突概率。
1万+

被折叠的 条评论
为什么被折叠?



