11375 - Matches
Time limit: 2.000 seconds
http://uva.onlinejudge.org/index.php?option=onlinejudge&page=show_problem&problem=2370
We can make digits with matches as shown below:

GivenNmatches, find the number of different numbers representable using the matches. We shall only make numbers greater than or equal to 0, so no negative signs should be used. For instance, if you have 3 matches, then you can only make the numbers 1 or 7. If you have 4 matches, then you can make the numbers 1, 4, 7 or 11. Note that leading zeros are not allowed (e.g. 001, 042, etc. are illegal). Numbers such as 0, 20, 101 etc. are permitted, though.
Input
Input contains no more than 100 lines. Each line contains one integerN(1 ≤N≤ 2000).
Output
For eachN, output the number of different (non-negative) numbers representable if you haveNmatches.
Sample Input
3 4
Sample Output
2 4
简单DP。
完整代码:
/*0.076s*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 2001;
const int c[] = {6, 2, 5, 5, 4, 5, 6, 3, 7, 6}; /// c[i]表示数字i需要的火柴数
struct node
{
int p[500], len;
node()
{
memset(p, 0, sizeof(p));
len = 0;
}
node(int a)
{
p[0] = a;
len = 1;
}
node operator + (const node& a) const
{
node b;
b.len = max(len, a.len);
for (int i = 0; i < b.len; i++)
{
b.p[i] += p[i] + a.p[i];
b.p[i + 1] = b.p[i] / 10;
b.p[i] %= 10;
}
if (b.p[b.len] > 0) b.len++;
return b;
}
node operator += (const node& a)
{
*this = *this + a;
return *this;
}
void out()
{
if (len == 0) putchar('0');
else
{
for (int i = len - 1; i >= 0; i--)
printf("%d", p[i]);
}
putchar(10);
}
} d[maxn];
int main()
{
int i, j, n;
d[0] = node(1);
for (i = 0; i < maxn; ++i)
for (j = 0; j < 10; ++j)
if (i + c[j] < maxn && (i || j))
d[i + c[j]] += d[i];
d[6] += node(1);
for (i = 2; i < maxn; ++i) d[i] += d[i - 1];
while (~scanf("%d", &n))
d[n].out();
return 0;
}
本文介绍了一个使用动态规划解决火柴拼数字问题的算法,输入为火柴数量,输出为能拼出的不同非负整数的数量。算法通过预处理得到每个数字所需的火柴数,并使用动态规划计算总组合数。
401

被折叠的 条评论
为什么被折叠?



