最小堆应用---用最小堆实现huffman树

本文介绍如何使用最小堆来构建Huffman树,这是形成Huffman编码的基础。通过C++代码示例展示了从创建节点到合并节点的全过程,并利用最小堆优化了Huffman树的构建过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小堆应用---用最小堆实现huffman树,huffman是形成huffman编码的基础.
[code]
#include"MinHeap.h"

template<class T> class HuffmanTree;
template<class T>
class TreeNode{
friend class HuffmanTree<T>;
private:
T data;
TreeNode<T> *left,*right;
public:
TreeNode(T value){
data = value;
left = right = NULL;
}
TreeNode(){
left = right = NULL;
}
bool operator > (const TreeNode &node){
return data > node.data;
}
bool operator < (const TreeNode &node){
return data < node.data;
}
bool operator == (const TreeNode &node){
return data == node.data;
}
bool operator >= (const TreeNode &node){
return data >= node.data;
}
};

template <class T>
class HuffmanTree{
public:
HuffmanTree();
HuffmanTree(T value[],int n);
protected:
TreeNode<T> *JoinTree(TreeNode<T> &node1,TreeNode<T> &node2);
TreeNode<T> *root;
};

template<class T>
HuffmanTree<T>::HuffmanTree():root(NULL){
}

template<class T>
HuffmanTree<T>::HuffmanTree(T value[],int n):root(NULL){
TreeNode<T> *nodes = new TreeNode<T>[n];
TreeNode<T> leftNode,rightNode;
int i = 0;
for(i = 0; i < n; i++){
nodes[i] = TreeNode<T>(value[i]);
}
MinHeap< TreeNode<T> > *m_heap = new MinHeap< TreeNode<T> >(nodes,n);

for(i = 0; i < n-1; i++){
m_heap->RemoveMin(leftNode);
m_heap->RemoveMin(rightNode);
root = JoinTree(leftNode,rightNode);
m_heap->Insert(*root);
}
}

template<class T>
TreeNode<T> *HuffmanTree<T>::JoinTree(TreeNode<T> &node1,TreeNode<T> &node2){
TreeNode<T> *r = new TreeNode<T>;
r->left = &node1;
r->right = &node2;
r->data = node1.data + node2.data;
return r;
}

[/code]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值