人脸识别经典算法三:Fisherface(LDA)

本文详细介绍了Fisherface算法,它基于LDA理论,用于人脸识别。通过线性判别分析降低数据维度,实现不同类别的区分。文章探讨了二类和多类情况下的数据处理,并解释了如何寻找最佳投影向量,以及如何在多维数据中应用这些概念。此外,还对比了Fisherface与PCA的区别,并提到了特征向量在人脸识别匹配中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fisherface是由Ronald Fisher发明的,想必这就是Fisherface名字由来。Fisherface所基于的LDA(Linear Discriminant Analysis,线性判别分析)理论和特征脸里用到的PCA有相似之处,都是对原有数据进行整体降维映射到低维空间的方法,LDA和PCA都是从数据整体入手而不同于LBP提取局部纹理特征。如果阅读本文有难度,可以考虑自学斯坦福公开课机器学习或者补充线代等数学知识。

同时作者要感谢cnblogs上的大牛JerryLead,本篇博文基本摘自他的线性判别分析(Linear Discriminant Analysis)[1]。


1、数据集是二类情况

通常情况下,待匹配人脸要和人脸库内的多张人脸匹配,所以这是一个多分类的情况。出于简单考虑,可以先介绍二类的情况然后拓展到多类。假设有二维平面上的两个点集x(x是包含横纵坐标的二维向量),它们的分布如下图(1)(分别以蓝点和红点表示数据):


原有数据是散布在平面上的二维数据,如果想用一维的量(比如到圆点的距离)来合理的表示而且区分开这些数据,该怎么办呢?一种有效的方法是找到一个合适的向量w(和数据相同维数),将数据投影到w上(会得到一个标量,直观的理解就是投影点到坐标原点的距离),根据投影点来表示和区分原有数据。以数学公式给出投影点到到原点的距离:​y=wTx。图(1)给出了两种w方案,w以从原点出发的直线来表示,直线上的点是原数据的投影点。直观判断右侧的w更好些,其上的投影点能够合理的区分原有的两个数据集。但是计算机不知道这些,所以必须要有确定的方法来计算这个w。

首先计算每类数据的均值(中心点):

这里的i是数据的分类个数,Ni代表某个分类下的数据点数,比如u1代表红点的中心,u2代表蓝点的中心。

数据点投影到w上的中心为:


如何判断向量w最佳呢,可以从两方面考虑:1、不同的分类得到的投影点要尽量分开;2、同一个分类投影后得到的点要尽量聚合。从这两方面考虑,可以定义如下公式:


J(w)代表不同分类投影中心的距离,它的值越大越好。


上式称之为散列值(scatter matrixs),代表同一个分类投影后的散列值,也就是投影点的聚合度,它的值越小代表投影点越聚合。

结合两个公式,第一个公式做分子另一个做分母:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值