Given a sequence of matrices, find the most efficient way to multiply these matrices together.The problem is not actually to perform the multiplications, but merely to decide in which order to perform the multiplications.
We have many options to multiply a chain of matrices because matrix multiplication is associative. In other words, no matter how we parenthesize the product, the result will be the same. For example, if we had four matrices A, B, C, and D, we would have:
(ABC)D = (AB)(CD) = A(BCD) = ....
However, the order in which we parenthesize the product affects the number of simple arithmetic operations needed to compute the product, or the efficiency. For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × 60 matrix. Then,
(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations
A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations.
Clearly the first method is the more efficient.
Given an array p[] which represents the chain of matrices such that the ith matrix Ai is of dimension p[i-1] x p[i]. We need to write a function MatrixChainOrder() that should return the minimum number of multiplications needed to multiply the chain.
Input: p[] = {40, 20, 30, 10, 30}
Output: 26000
There are 4 matrices of dimensions 40x20, 20x30, 30x10 and 10x30.
Let the input 4 matrices be A, B, C and D. The minimum number of
multiplications are obtained by putting parenthesis in following way
(A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30
Input: p[] = {10, 20, 30, 40, 30}
Output: 30000
There are 4 matrices of dimensions 10x20, 20x30, 30x40 and 40x30.
Let the input 4 matrices be A, B, C and D. The minimum number of
multiplications are obtained by putting parenthesis in following way
((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30
Input: p[] = {10, 20, 30}
Output: 6000
There are only two matrices of dimensions 10x20 and 20x30. So there
is only one way to multiply the matrices, cost of which is 10*20*30
本文探讨了如何找到最优方式来乘接一系列矩阵的问题。虽然实际的矩阵乘法不是重点,但选择正确的乘法顺序能显著减少所需的简单算术操作数量。通过递归和动态规划的方法,我们介绍了如何计算出最少的操作次数。
1716

被折叠的 条评论
为什么被折叠?



