Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array[−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray[4,−1,2,1]
has the largest sum =6
.
More practice:
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
这是个很经典的题目了。
两个方法:
1 动态规划法
2 二分法
这里是使用简单的动态规划法,只需要一个额外空间记录就可以了,只要知道方法,实现起来比二分法简单多了。
class Solution {
public:
int maxSubArray(int A[], int n) {
int tempSum = 0;
int maxSum = INT_MIN;
for (int i = 0; i < n; i++)
{
tempSum += A[i];
maxSum = max(tempSum, maxSum);
if (tempSum < 0) tempSum = 0;
}
return maxSum;
}
};
二分法关键: 当最大子序列出现在中间的时候,应该如何计算最大值?
1 要循环完左边和右边的序列
2 从中间到左边,找到最大值
3 从中间到右边,找到最大值
这个判断条件还是有点难想的。
不过本题卡我时间最长的居然是一个小问题:最左边的下标写成了0.狂晕!
class Solution {
public:
int maxSubArray(int A[], int n) {
if (n < 1) return 0;
if (n == 1) return A[0];
return biSubArray(A, 0, n-1);
}
//low和up均为C++存储内容的下标
int biSubArray(int A[], int low, int up)
{
if (low > up) return INT_MIN;
if (low == up) return A[low];
int mid = low+((up-low)>>1);
//low不小心写成了0,结果浪费了很长时间debug
int lSum = biSubArray(A, low, mid);
int rSum = biSubArray(A, mid+1, up);
int midLSum = INT_MIN;
int tempSum = 0;
//low不小心写成了0,结果浪费了很多时间调试。
for (int i = mid; i >= low; i--)
{
tempSum += A[i];
//注意:条件的构造
if (tempSum > midLSum)
midLSum = tempSum;
}
int midRSum = INT_MIN;
tempSum = 0;
for (int i = mid+1; i <= up; i++)
{
tempSum += A[i];
if (tempSum > midRSum)
midRSum = tempSum;
}
int midSum = midLSum + midRSum;
return max(max(lSum,rSum), midSum);
}
};