Funture Learning List

本文档概述了Adobe和Flash技术的学习路径,包括在线应用程序、Flash Player新特性、3D效果绘制API、GPU加速等内容,并介绍了Tomcat配置、版本控制系统SVN、查询语言HQL和SQL等知识点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Learn to use some Adobe Online Applications such as "Adobe BUZZWORD " and "Online Photoshop "


2. Learn to use Flash Build Beta 2


3. Learn to use Flash Catalyst Beta 2


4. Learn to know and how to use some Flash Player 10' s new features especially on 3D effects and Drawing API


5. Learn to know and how to use some Flash Player 10.1 's new features especially on GPU acceleration


6. Learn to use Pixel Bender


7. Learn to know Flash PlatForm


8. Learn to know Tomcat configuration and arrange these points

9. Learn to use SVN including creating a repository


10. Learn to use HQL and SQL


11. Arrange Alchemy points and get some Adobe Alchemy examples


12. Learn to know and use Spring


13. Read book - "Papervision3D Essentials "


14. Learn to use AWAY3D , SANDY3D and ALTERNATIVA3D


15. Learn to use haXe


16. Learn to know Security Sandbox


17. Learn to use Messaging Service in LCDS

### Q-Learning 示例 #### 环境设定 为了更好地理解Q-Learning的工作原理,考虑一个简单的迷宫环境作为示例。在这个环境中,智能体的目标是从起点移动到终点,同时避开障碍物。 #### 初始化参数 初始化过程中设置折扣因子γ (gamma),学习率α (alpha),以及探索率ε (epsilon)。这些超参数对于算法性能至关重要[^1]。 ```python import numpy as np import random # 定义环境大小 size = 5 env = np.zeros((size, size)) # 设置目标位置(4,4) goal_position = (4, 4) # 障碍物的位置 obstacle_positions = [(1, 2), (2, 2)] for pos in obstacle_positions: env[pos] = -1 env[goal_position] = 100 # 终点奖励设为正数表示成功到达目的地 print("Environment:") print(env) ``` #### 创建Q表并定义辅助函数 创建一个二维数组来存储各个状态下采取不同行动所获得的预期回报值——即所谓的Q值。此外还需要几个帮助函数来进行状态转换、获取最大Q值的动作等操作[^4]。 ```python q_table = {} def get_q_value(state, action): state_str = str(state) if not q_table.get(state_str): q_table[state_str] = {'up':0,'down':0,'left':0,'right':0} return q_table[state_str][action] def set_q_value(state, action, value): state_str = str(state) q_table[state_str][action] = round(value, 2) actions = ['up', 'down', 'left', 'right'] def choose_action(state, epsilon=0.1): if random.uniform(0, 1) < epsilon: return random.choice(actions) else: max_actions = [] best_reward = float('-inf') for act in actions: reward = get_q_value(state, act) if reward > best_reward: max_actions = [act] best_reward = reward elif reward == best_reward: max_actions.append(act) return random.choice(max_actions) def take_action(current_state, chosen_action): new_state = list(current_state).copy() if chosen_action == "up": new_state[0] -= 1 elif chosen_action == "down": new_state[0] += 1 elif chosen_action == "left": new_state[1] -= 1 elif chosen_action == "right": new_state[1] += 1 new_state = tuple(new_state) if new_state[0]<0 or new_state[0]>=size or \ new_state[1]<0 or new_state[1]>=size or \ new_state in obstacle_positions: return current_state, -1 return new_state, env[new_state] ``` #### 更新规则实现 核心部分在于如何根据当前经历的状态转移序列调整相应的Q值。这里采用贝尔曼方程的形式进行迭代更新。 ```python def update_q_table(old_state, action_taken, reward_received, next_state, alpha=0.1, gamma=0.9): old_q_val = get_q_value(old_state, action_taken) future_rewards = [] for a in actions: future_rewards.append(get_q_value(next_state, a)) max_future_reward = max(future_rewards) td_target = reward_received + gamma * max_future_reward updated_q_val = old_q_val + alpha*(td_target-old_q_val) set_q_value(old_state, action_taken, updated_q_val) ``` #### 训练过程模拟 通过多次尝试让智能体逐渐掌握最优路径的选择方法,在此期间不断优化其内部维护的那个价值评估表格(也就是Q-table)。随着训练次数增加,最终能够形成较为稳定的决策模式[^2]。 ```python episodes = 1000 start_pos = (0, 0) for episode in range(episodes): curr_pos = start_pos while True: selected_action = choose_action(curr_pos) next_pos, received_reward = take_action(curr_pos, selected_action) update_q_table(curr_pos, selected_action, received_reward, next_pos) if next_pos==goal_position or received_reward==-1: break curr_pos = next_pos ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值