2010-12-31 words

本文探讨了基于作业安全选项的访问控制机制,该机制允许用户根据其与他人作业的关系访问特定人员的作业详情。文中还涉及了不同类型的权限设置、并发操作及数据权限等概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

reclassification:

All three of the job security options give users access to a person’s assignments (EMPLID/EMPL_RCD)
based on the relationship that the assignment has to another assignment that the user has access to normally,
with basic data permission.

logistical: of or relating to logistics.


jurisdiction: The court has no jurisdiction over the diplomats living in this country.
pertain: The inspector was interested in everything pertaining to the school.
contain:
sequential,sequentially:
nor: 1.Not a flower nor a blade of grass will grow in the desert.
2.All about that is true, nor must we forget about it.

permissible: Is smoking permissible in the theatre?
otherwise: The soup is cold, but it was otherwise an excellent meal.
"new second assignment start" is different from/than "new assignment start".

ledger: The ledgers and account books had all be destroyed.
concurrent: The twins had concurrent birthday.
aka: also known as ABBR.
abbreviate: The name Susan is often abbreviated to Sue.
canvas: The times that people used canvas boat have become history.
obligatory: It's obligatory on every citizen to safeguard our great motherland.

nant: 小河谷
leave out: leave out "a" 不要"a"
bus factor:公共要素

tuning:调子
distortion: His report was attracked as a gross distortion of the truth.
coherent:条理清楚的;(想法)合乎情理的;

methodology: 方法学、方法论:His current work centres opon the study of methodology in teaching.
replicate:copy
假如我用bertopic对英文专利摘要文本进行了静态主题表示,在此基础上现在我需要用bertopic自带的topic_over_time动态主题建模结合调整c-TF-IDF 算法进行动态主题表示,动态主题表示设置时间戳 t1=2000-2010 年,t2=2011-2018 年,t3=2019-2024 年。最终,将当前阶段和前一阶段的 c-TF-IDF 平均值作为当前阶段的权重分数,取权重分数前 15 的单词作为动态主题的关键词,形成动态主题词列表。注意,已经进行切词、去除停用词、标点符号的英文专利摘要文本保存在’tokenized_abstract.csv’中,并且在静态主题建模时已经进行了加载,专利摘要对应的时间数据保存在’date.txt’中,尚未加载,已经执行的静态主题模型的参数设置如下:from sentence_transformers import SentenceTransformer Step 1 - Extract embeddings embedding_model = SentenceTransformer(“C:\Users\18267\.cache\huggingface\hub\models–sentence-transformers–all-mpnet-base-v2\snapshots\9a3225965996d404b775526de6dbfe85d3368642”) embeddings = np.load(‘clean_emb_last.npy’) print(f"嵌入的形状: {embeddings.shape}") Step 2 - Reduce dimensionality umap_model = UMAP(n_neighbors=7, n_components=10, min_dist=0.0, metric=‘cosine’,random_state=42) Step 3 - Cluster reduced embeddings hdbscan_model = HDBSCAN(min_samples=7, min_cluster_size=60,metric=‘euclidean’, cluster_selection_method=‘eom’, prediction_data=True) Step 4 - Tokenize topics Combine custom stop words with scikit-learn’s English stop words custom_stop_words = [‘h2’, ‘storing’, ‘storage’, ‘include’, ‘comprise’, ‘utility’, ‘model’, ‘disclosed’, ‘embodiment’, ‘invention’, ‘prior’, ‘art’, ‘according’, ‘present’, ‘method’, ‘system’, ‘device’, ‘may’, ‘also’, ‘use’, ‘used’, ‘provide’, ‘wherein’, ‘configured’, ‘predetermined’, ‘plurality’, ‘comprising’, ‘consists’, ‘following’, ‘characterized’, ‘claim’, ‘claims’, ‘said’, ‘first’, ‘second’, ‘third’, ‘fourth’, ‘fifth’, ‘one’, ‘two’, ‘three’,‘hydrogen’] Create combined stop words set all_stop_words = set(custom_stop_words).union(ENGLISH_STOP_WORDS) vectorizer_model = CountVectorizer(stop_words=list(all_stop_words)) Step 5 - Create topic representation ctfidf_model = ClassTfidfTransformer() All steps together topic_model = BERTopic( embedding_model=embedding_model, # Step 1 - Extract embeddings umap_model=umap_model, # Step 2 - Reduce dimensionality hdbscan_model=hdbscan_model, # Step 3 - Cluster reduced embeddings vectorizer_model=vectorizer_model, # Step 4 - Tokenize topics ctfidf_model=ctfidf_model, # Step 5 - Extract topic words top_n_words=50 ) 现在,请你给出实现这一操作的python代码帮我完成静态主题表示之后的动态主题表示。调整后的c-TF-IDF计算公式如下: $ c-TF-IDF_{w,c,r} = \frac{\left(\sqrt{\frac{f_{w,c,r}}{f_c}} + \sqrt{\frac{f_{w,c,r-1}}{f_c}}\right) \cdot \log\left(1 + \frac{M - cf_w + 0.5}{cf_w + 0.5}\right)}{2} $ 文字说明: “其中,( f_{w,c,r} ) 为第 ( r ) 阶段时,词 ( w ) 在聚类簇 ( c ) 中出现的频次,( f_c ) 表示聚类簇 ( c ) 中词数。( M ) 表示簇的平均单词数,( cf_w ) 表示词 ( w ) 在所有簇中出现频次。”
03-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值