mysql 5.1已经到了beta版,官方网站上也陆续有一些文章介绍,比如上次看到的Improving Database Performance with Partitioning。在使用分区的前提下,可以用mysql实现非常大的数据量存储。今天在mysql的站上又看到一篇进阶的文章 —— 按日期分区存储。如果能够实现按日期分区,这对某些时效性很强的数据存储是相当实用的功能。下面是从这篇文章中摘录的一些内容。
错误的按日期分区例子
最直观的方法,就是直接用年月日这种日期格式来进行常规的分区:
-
mysql> create table rms (d date )
-
-> partition by range (d )
-
-> (partition p0 values less than ( '1995-01-01' ),
-
-> partition p1 VALUES LESS THAN ( '2010-01-01' ) );
上面的例子中,就是直接用"Y-m-d"的格式来对一个table进行分区,可惜想当然往往不能奏效,会得到一个错误信息:
ERROR 1064 (42000): VALUES value must be of same type as partition function near '),
partition p1 VALUES LESS THAN ('2010-01-01'))' at line 3
上述分区方式没有成功,而且明显的不经济,老练的DBA会用整型数值来进行分区:
-
mysql> CREATE TABLE part_date1
-
-> ( c1 int default NULL,
-
-> c2 varchar ( 30 ) default NULL,
-
-> c3 date default NULL ) engine=myisam
-
-> partition by range (cast (date_format (c3, '%Y%m%d' ) as signed ) )
-
-> (PARTITION p0 VALUES LESS THAN ( 19950101 ),
-
-> PARTITION p1 VALUES LESS THAN ( 19960101 ) ,
-
-> PARTITION p2 VALUES LESS THAN ( 19970101 ) ,
-
-> PARTITION p3 VALUES LESS THAN ( 19980101 ) ,
-
-> PARTITION p4 VALUES LESS THAN ( 19990101 ) ,
-
-> PARTITION p5 VALUES LESS THAN ( 20000101 ) ,
-
-> PARTITION p6 VALUES LESS THAN ( 20010101 ) ,
-
-> PARTITION p7 VALUES LESS THAN ( 20020101 ) ,
-
-> PARTITION p8 VALUES LESS THAN ( 20030101 ) ,
-
-> PARTITION p9 VALUES LESS THAN ( 20040101 ) ,
-
-> PARTITION p10 VALUES LESS THAN ( 20100101 ),
-
-> PARTITION p11 VALUES LESS THAN MAXVALUE );
-
Query OK, 0 rows affected ( 0. 01 sec )
搞定?接着往下分析
-
mysql> explain partitions
-
-> select count (* ) from part_date1 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
-
*************************** 1. row ***************************
-
id: 1
-
select_type: SIMPLE
-
table: part_date1
-
partitions: p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11
-
type: ALL
-
possible_keys: NULL
-
key: NULL
-
key_len: NULL
-
ref: NULL
-
rows: 8100000
-
Extra: Using where
-
1 row in set ( 0. 00 sec )
万恶的mysql居然对上面的sql使用全表扫描,而不是按照我们的日期分区分块查询。原文中解释到MYSQL的优化器并不认这种日期形式的分区,花了大量的篇幅来引诱俺走上歧路,过分。
正确的日期分区例子
mysql优化器支持以下两种内置的日期函数进行分区:
- TO_DAYS()
- YEAR()
看个例子:
-
mysql> CREATE TABLE part_date3
-
-> ( c1 int default NULL,
-
-> c2 varchar ( 30 ) default NULL,
-
-> c3 date default NULL ) engine=myisam
-
-> partition by range (to_days (c3 ) )
-
-> (PARTITION p0 VALUES LESS THAN (to_days ( '1995-01-01' ) ),
-
-> PARTITION p1 VALUES LESS THAN (to_days ( '1996-01-01' ) ) ,
-
-> PARTITION p2 VALUES LESS THAN (to_days ( '1997-01-01' ) ) ,
-
-> PARTITION p3 VALUES LESS THAN (to_days ( '1998-01-01' ) ) ,
-
-> PARTITION p4 VALUES LESS THAN (to_days ( '1999-01-01' ) ) ,
-
-> PARTITION p5 VALUES LESS THAN (to_days ( '2000-01-01' ) ) ,
-
-> PARTITION p6 VALUES LESS THAN (to_days ( '2001-01-01' ) ) ,
-
-> PARTITION p7 VALUES LESS THAN (to_days ( '2002-01-01' ) ) ,
-
-> PARTITION p8 VALUES LESS THAN (to_days ( '2003-01-01' ) ) ,
-
-> PARTITION p9 VALUES LESS THAN (to_days ( '2004-01-01' ) ) ,
-
-> PARTITION p10 VALUES LESS THAN (to_days ( '2010-01-01' ) ),
-
-> PARTITION p11 VALUES LESS THAN MAXVALUE );
-
Query OK, 0 rows affected ( 0. 00 sec )
以to_days()函数分区成功,我们分析一下看看:
-
mysql> explain partitions
-
-> select count (* ) from part_date3 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31'\G
-
*************************** 1. row ***************************
-
id: 1
-
select_type: SIMPLE
-
table: part_date3
-
partitions: p1
-
type: ALL
-
possible_keys: NULL
-
key: NULL
-
key_len: NULL
-
ref: NULL
-
rows: 808431
-
Extra: Using where
-
1 row in set ( 0. 00 sec )
可以看到,mysql优化器这次不负众望,仅仅在p1分区进行查询。在这种情况下查询,真的能够带来提升查询效率么?下面分别对这次建立的part_date3和之前分区失败的part_date1做一个查询对比:
-
mysql> select count (* ) from part_date3 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31';
-
+----------+
-
| count (* ) |
-
+----------+
-
| 805114 |
-
+----------+
-
1 row in set ( 4. 11 sec )
-
-
mysql> select count (* ) from part_date1 where
-
-> c3> date '1995-01-01' and c3 <date '1995-12-31';
-
+----------+
-
| count (* ) |
-
+----------+
-
| 805114 |
-
+----------+
-
1 row in set ( 40. 33 sec )
可以看到,分区正确的话query花费时间为4秒,而分区错误则花费时间40秒(相当于没有分区),效率有90%的提升!所以我们千万要正确的使用分区功能,分区后务必用explain验证,这样才能获得真正的性能提升。
热切期待msyql 5.1稳定版发布!