select改变后传送selected值

本文介绍了如何在HTML中实现当Select元素的选择项发生变化时,如何将新的选择值传递出去的方法。一种方式是直接通过JavaScript函数处理,另一种则是利用表单(Form)来传输。

 

当select变化后,可使用下面语句传送选择的值:

<select name="xxx" onChange=selectChange(this.options[this.selectedIndex].value) >

另外,也可以使用form的形式传,this.formname.xxx.value。

% ============== 主优化函数 ============== function optimal_temperature_solution() % ================== 主优化流程 ================== % 1. 参数初始化 params = initialize_parameters(); % 2. 定义优化变量和约束边界 [lb, ub] = define_variable_bounds(); % 3. NSGA-III优化 [optimal_params, pareto_front] = nsga3_optimization(params, lb, ub); % 4. 从Pareto前沿选择最佳解 [T_set, v] = select_best_solution(pareto_front); % 5. 验证并可视化结果 [t, T, area, asymmetry, constraints] = verify_solution(T_set, v, params); % 6. 输出最终结果 display_results(T_set, v, area, asymmetry, constraints, t, T); % 7. 可视化Pareto前沿 visualize_pareto_front(pareto_front); end % ============== NSGA-III优化函数 ============== function [optimal_params, pareto_front] = nsga3_optimization(params, lb, ub) % 算法参数设置 pop_size = 100; % 种群大小 max_gen = 50; % 最大迭代次数 n_var = numel(lb); % 变量数量 % 初始化种群 population = initialize_population(lb, ub, pop_size); % 评估初始种群 [objectives, feas_flags] = evaluate_population(population, params); % NSGA-III主循环 pareto_front = []; for gen = 1:max_gen % 进化操作:选择、交叉、变异 offspring = evolve_population(population, lb, ub); % 评估子代 [off_obj, off_feas] = evaluate_population(offspring, params); % 合并种群 combined_pop = [population; offspring]; combined_obj = [objectives; off_obj]; combined_feas = [feas_flags; off_feas]; % 非支配排序 [fronts, ~] = non_dominated_sort(combined_obj, combined_feas); % 环境选择 [population, objectives, feas_flags] = environmental_selection(... combined_pop, combined_obj, combined_feas, fronts, pop_size); % 保存当前Pareto前沿 pareto_front = [pareto_front; population(fronts{1}, :) objectives(fronts{1}, :)]; fprintf('第%d代: Pareto前沿解数=%d\n', gen, numel(fronts{1})); end optimal_params = population(1, :); % 返回第一前沿的第一个解 end function population = initialize_population(lb, ub, pop_size) % 使用拉丁超立方采样初始化种群 population = lhsdesign(pop_size, numel(lb)) .* (ub - lb) + lb; end function [objectives, feas_flags] = evaluate_population(population, params) pop_size = size(population, 1); objectives = zeros(pop_size, 2); % 两个目标:面积和不对称性 feas_flags = false(pop_size, 1); % 可行性标志 parfor i = 1:pop_size T_set = population(i, 1:4); v = population(i, 5); try % 模拟温度曲线 [t, T] = simulate_oven(T_set, v, params); % 计算关键指标 metrics = compute_metrics(t, T); % 检查制程界限约束 constraints_satisfied = check_constraints(metrics); if constraints_satisfied % 目标函数 objectives(i, 1) = metrics.area; % 目标1: 最小化面积 objectives(i, 2) = metrics.asymmetry; % 目标2: 最小化不对称性 feas_flags(i) = true; else % 违反约束的惩罚 objectives(i, 1) = 1e10; objectives(i, 2) = 1e10; end catch % 模拟失败的惩罚 objectives(i, 1) = 1e10; objectives(i, 2) = 1e10; end end end function offspring = evolve_population(population, lb, ub) pop_size = size(population, 1); n_var = size(population, 2); offspring = zeros(pop_size, n_var); % 锦标赛选择 tournament_size = 2; for i = 1:pop_size % 随机选择竞争者 competitors = randperm(pop_size, tournament_size); % 选择最优的竞争者 [~, best_idx] = min(sum(population(competitors, :), 2)); selected(i) = competitors(best_idx); end % 模拟二进制交叉 pc = 0.9; % 交叉概率 eta_c = 20; % 分布指数 for i = 1:2:pop_size if rand < pc % 选择两个父代 p1 = population(selected(i), :); p2 = population(selected(i+1), :); % 交叉操作 [c1, c2] = sbx_crossover(p1, p2, lb, ub, eta_c); offspring(i, :) = c1; offspring(i+1, :) = c2; else offspring(i, :) = population(selected(i), :); offspring(i+1, :) = population(selected(i+1), :); end end % 多项式变异 pm = 1/n_var; % 变异概率 eta_m = 20; % 分布指数 for i = 1:pop_size if rand < pm offspring(i, :) = polynomial_mutation(offspring(i, :), lb, ub, eta_m); end end end function [c1, c2] = sbx_crossover(p1, p2, lb, ub, eta_c) n_var = length(p1); c1 = p1; c2 = p2; for j = 1:n_var if rand < 0.5 % 确保不是相同 if abs(p1(j) - p2(j)) > 1e-10 if p1(j) < p2(j) y1 = p1(j); y2 = p2(j); else y1 = p2(j); y2 = p1(j); end yL = lb(j); yU = ub(j); rand_val = rand; beta = 1.0 + (2.0 * (y1 - yL) / (y2 - y1)); alpha = 2.0 - beta^(-(eta_c+1.0)); beta_q = (rand_val <= (1.0/alpha)) ? ... (rand_val * alpha)^(1.0/(eta_c+1.0)) : ... (1.0/(2.0 - rand_val*alpha))^(1.0/(eta_c+1.0)); c1(j) = 0.5 * ((y1 + y2) - beta_q * (y2 - y1)); beta = 1.0 + (2.0 * (yU - y2) / (y2 - y1)); alpha = 2.0 - beta^(-(eta_c+1.0)); beta_q = (rand_val <= (1.0/alpha)) ... (rand_val * alpha)^(1.0/(eta_c+1.0)) : ... (1.0/(2.0 - rand_val*alpha))^(1.0/(eta_c+1.0)); c2(j) = 0.5 * ((y1 + y2) + beta_q * (y2 - y1)); % 边界处理 c1(j) = max(yL, min(yU, c1(j))); c2(j) = max(yL, min(yU, c2(j))); end end end end function mutated = polynomial_mutation(ind, lb, ub, eta_m) n_var = length(ind); mutated = ind; for j = 1:n_var if rand < (1/n_var) y = ind(j); yL = lb(j); yU = ub(j); delta1 = (y - yL) / (yU - yL); delta2 = (yU - y) / (yU - yL); rand_val = rand; mut_pow = 1.0/(eta_m+1.0); if rand_val <= 0.5 xy = 1.0 - delta1; val = 2.0*rand_val + (1.0 - 2.0*rand_val) * xy^(eta_m+1.0); deltaq = val^mut_pow - 1.0; else xy = 1.0 - delta2; val = 2.0*(1.0 - rand_val) + 2.0*(rand_val - 0.5) * xy^(eta_m+1.0); deltaq = 1.0 - val^mut_pow; end y = y + deltaq * (yU - yL); mutated(j) = max(yL, min(yU, y)); end end end function [fronts, rank] = non_dominated_sort(objectives, feas_flags) pop_size = size(objectives, 1); rank = inf(pop_size, 1); dominated_count = zeros(pop_size, 1); dominated_set = cell(pop_size, 1); % 初始化 for i = 1:pop_size for j = 1:pop_size if i ~= j % 可行性优先 if feas_flags(i) && ~feas_flags(j) dominated = true; elseif ~feas_flags(i) && feas_flags(j) dominated = false; else % 双目标支配关系 dominated = all(objectives(i, :) <= objectives(j, :)) && ... any(objectives(i, :) < objectives(j, :)); end if dominated dominated_set{i} = [dominated_set{i}, j]; dominated_count(j) = dominated_count(j) + 1; end end end end % 寻找第一前沿 current_front = find(dominated_count == 0); rank(current_front) = 1; fronts = {current_front}; % 分层排序 k = 1; while ~isempty(current_front) next_front = []; for i = 1:length(current_front) p = current_front(i); for j = dominated_set{p} dominated_count(j) = dominated_count(j) - 1; if dominated_count(j) == 0 rank(j) = k + 1; next_front = [next_front, j]; end end end k = k + 1; current_front = next_front; if ~isempty(next_front) fronts{end+1} = next_front; end end end function [selected_pop, selected_obj, selected_feas] = environmental_selection(... population, objectives, feas_flags, fronts, pop_size) selected_pop = []; selected_obj = []; selected_feas = []; current_front = 1; % 逐步添加前沿直到达到或超过种群大小 while current_front <= length(fronts) && ... size(selected_pop, 1) + length(fronts{current_front}) <= pop_size % 添加整个前沿 front_indices = fronts{current_front}; selected_pop = [selected_pop; population(front_indices, :)]; selected_obj = [selected_obj; objectives(front_indices, :)]; selected_feas = [selected_feas; feas_flags(front_indices)]; current_front = current_front + 1; end % 如果还有空间,使用参考点选择 if size(selected_pop, 1) < pop_size remaining = pop_size - size(selected_pop, 1); last_front = fronts{current_front}; % 使用niching选择剩余个体 [selected, ~] = niche_selection(objectives(last_front, :), remaining); selected_from_last = last_front(selected); selected_pop = [selected_pop; population(selected_from_last, :)]; selected_obj = [selected_obj; objectives(selected_from_last, :)]; selected_feas = [selected_feas; feas_flags(selected_from_last)]; elseif size(selected_pop, 1) > pop_size % 如果超过,截断最后一个前沿 selected_pop = selected_pop(1:pop_size, :); selected_obj = selected_obj(1:pop_size, :); selected_feas = selected_feas(1:pop_size); end end function [selected_indices] = niche_selection(objectives, k) % 简化版的niching选择 [N, M] = size(objectives); selected_indices = []; % 理想点 ideal_point = min(objectives); % 归一化目标 norm_obj = objectives - repmat(ideal_point, N, 1); max_obj = max(norm_obj); norm_obj = norm_obj ./ repmat(max_obj, N, 1); % 创建参考点 p = 12; % 每个目标的划分数量 ref_points = generate_reference_points(M, p); % 关联解到参考点 [association, ~] = associate_to_reference_points(norm_obj, ref_points); % 选择selected_indices = []; while length(selected_indices) < k % 找到最少关联的参考点 counts = zeros(size(ref_points, 1), 1); for i = 1:length(association) if ~isempty(association{i}) counts(i) = length(association{i}); end end [~, min_idx] = min(counts); if ~isempty(association{min_idx}) % 从该参考点的关联解中选择一个 candidates = association{min_idx}; [~, min_dist_idx] = min(vecnorm(norm_obj(candidates, :) - ref_points(min_idx, :), 2, 2)); selected = candidates(min_dist_idx); selected_indices = [selected_indices; selected]; % 移除已选解 for i = 1:length(association) if ~isempty(association{i}) association{i}(association{i} == selected) = []; end end else ref_points(min_idx, :) = []; association(min_idx) = []; end end end function [T_set, v] = select_best_solution(pareto_front) % 从Pareto前沿中选择面积最小的解 [~, min_idx] = min(pareto_front(:, 6)); % 第6列是面积 optimal_params = pareto_front(min_idx, 1:5); T_set = optimal_params(1:4); % [预热区, 升温区, 回流区, 冷却区] v = optimal_params(5); % 传送带速度 end function visualize_pareto_front(pareto_front) % 可视化Pareto前沿 figure('Position', [200, 200, 800, 600]); % 提取目标和约束信息 areas = pareto_front(:, 6); asymmetries = pareto_front(:, 7); % 绘制Pareto前沿 scatter(areas, asymmetries, 50, 'filled'); xlabel('阴影面积 (°C·s)'); ylabel('不对称性 (s)'); title('Pareto前沿 (面积 vs 不对称性)'); grid on; % 添加最优解标记 hold on; [min_area, min_idx] = min(areas); scatter(min_area, asymmetries(min_idx), 100, 'ro', 'LineWidth', 2); text(min_area, asymmetries(min_idx), ' 面积最优解', 'FontSize', 12); [min_asym, min_idx] = min(asymmetries); scatter(areas(min_idx), min_asym, 100, 'go', 'LineWidth', 2); text(areas(min_idx), min_asym, ' 对称性最优解', 'FontSize', 12); legend('Pareto解', '面积最优解', '对称性最优解'); end function params = initialize_parameters() % 固定热物理参数 params = struct(... 'length', 4.355, ... % 炉子总长度 (m) 'boundaries', [0, 0.05, 0.30, 0.605, 1.665, 1.92, 2.07, 2.275, 2.425, 2.63, 2.78, 3.085, 3.235, 3.49, 3.64, 4.25, 4.355], ... 'initial_temp', 25, ... % 初始温度 (°C) 'thickness', 150e-6, ... % 焊接层厚度 (m) 'a', [8.42e-10, 8.42e-10, 8.42e-10, 8.42e-10, 8.42e-10, ... 8.07e-11, 1.55e-09, 1.22e-09, 1.22e-09, 1.14e-09], ... 'beta', [1.42e-06, 1.42e-06, 1.42e-06, 1.42e-06, 1.42e-06, ... 3.39e-06, 2.50e-06, 1.37e-06, 1.37e-06, 6.48e-07]... ); end function [lb, ub] = define_variable_bounds() % 各温区温度范围约束 [预热区, 升温区, 回流区, 冷却区] % 根据问题要求:温区1-5相同,8-9相同,10-11固定25°C lb_temp = [165, 185, 225, 245]; % 温度下限 (°C) ub_temp = [185, 205, 245, 265]; % 温度上限 (°C) % 传送带速度范围约束 (cm/min) lb_speed = 65; % 速度下限 ub_speed = 100; % 速度上限 % 组合所有边界 lb = [lb_temp, lb_speed]; ub = [ub_temp, ub_speed]; end function metrics = compute_metrics(t, T) % 初始化指标结构 metrics = struct(); % 1. 计算温度导数(斜率) dTdt = gradient(T, t); % 2. 找到超过217℃的区域 above_217 = T > 217; if any(above_217) start_idx = find(diff(above_217) > 0, 1) + 1; end_idx = find(diff(above_217) < 0, 1, 'last'); if isempty(end_idx) || end_idx < start_idx end_idx = length(T); end else start_idx = 1; end_idx = length(T); end % 3. 计算阴影面积 if start_idx < end_idx area_segment = t(start_idx:end_idx); temp_segment = T(start_idx:end_idx); metrics.area = trapz(area_segment, temp_segment - 217); else metrics.area = 0; end % 4. 找到峰温度 [metrics.peak_temp, peak_idx] = max(T); metrics.peak_time = t(peak_idx); % 5. 计算不对称性 if above_217(peak_idx) % 确保峰在217℃以上 t_left = metrics.peak_time - t(start_idx); t_right = t(end_idx) - metrics.peak_time; metrics.asymmetry = abs(t_left - t_right); else metrics.asymmetry = 0; end % 6. 计算在150-190℃的时间(仅上升阶段) rise_phase = (t <= metrics.peak_time); in_range = (T >= 150) & (T <= 190) & rise_phase; metrics.time_150_190 = trapz(t(in_range), ones(sum(in_range), 1)); % 7. 计算温度大于217℃的时间 metrics.time_above_217 = t(end_idx) - t(start_idx); % 8. 计算斜率指标 metrics.max_rise_slope = max(dTdt(dTdt > 0)); metrics.min_fall_slope = min(dTdt(dTdt < 0)); end function constraints_satisfied = check_constraints(metrics) % 检查所有制程界限约束 constraints_satisfied = true; % 1. 温度上升斜率约束 if metrics.max_rise_slope > 3 constraints_satisfied = false; return; end % 2. 温度下降斜率约束 if metrics.min_fall_slope < -3 constraints_satisfied = false; return; end % 3. 150-190℃时间约束 if metrics.time_150_190 < 60 || metrics.time_150_190 > 120 constraints_satisfied = false; return; end % 4. 217℃以上时间约束 if metrics.time_above_217 < 40 || metrics.time_above_217 > 90 constraints_satisfied = false; return; end % 5. 峰温度约束 if metrics.peak_temp < 240 || metrics.peak_temp > 250 constraints_satisfied = false; end end function [T_set, v] = extract_solution(optimal_params) T_set = optimal_params(1:4); % [预热区, 升温区, 回流区, 冷却区] v = optimal_params(5); % 传送带速度 end function [t, T, area, asymmetry, constraints] = verify_solution(T_set, v, params) % 分配温度到11个温区(根据问题要求) zone_temps = [25, T_set(1), T_set(1), T_set(1), T_set(1), ... % 温区1-5: 预热区 T_set(2), T_set(3), T_set(3), T_set(4), 25]; % 温区6: 升温区, 7-8: 回流区, 9-10: 冷却区 % 运行完整模拟 [t, T] = simulate_oven(T_set, v, params); % 计算所有指标 metrics = compute_metrics(t, T); area = metrics.area; asymmetry = metrics.asymmetry; % 检查约束 constraints = struct(); constraints.rise_slope_ok = (metrics.max_rise_slope <= 3); constraints.fall_slope_ok = (metrics.min_fall_slope >= -3); constraints.time_150_190_ok = (metrics.time_150_190 >= 60) && (metrics.time_150_190 <= 120); constraints.time_above_217_ok = (metrics.time_above_217 >= 40) && (metrics.time_above_217 <= 90); constraints.peak_temp_ok = (metrics.peak_temp >= 240) && (metrics.peak_temp <= 250); constraints.all_ok = constraints.rise_slope_ok && constraints.fall_slope_ok && ... constraints.time_150_190_ok && constraints.time_above_217_ok && ... constraints.peak_temp_ok; end function [t, T] = simulate_oven(T_set, v_cm_min, params) % 单位转换 v = v_cm_min / 100 / 60; % cm/min -> m/s total_time = params.length / v; t = 0:0.5:ceil(total_time); % 温度区配置(保持原有机理模型) zone_temps = [25, T_set(1), T_set(1), T_set(1), T_set(1), ... % 温区1-5 T_set(2), T_set(3), T_set(3), T_set(4), 25]; % 温区6-10 % 创建温区配置 oven_config = struct(... 'temperatures', zone_temps, ... 'transition_zones', [... struct('start', 1.92, 'end', 2.07, 'from', T_set(1), 'to', T_set(2)), ... struct('start', 2.275, 'end', 2.425, 'from', T_set(2), 'to', T_set(3)), ... struct('start', 2.63, 'end', 2.78, 'from', T_set(3), 'to', T_set(3)), ... struct('start', 3.49, 'end', 3.64, 'from', T_set(3), 'to', T_set(4))]... ); % 空间离散 xmesh = linspace(0, params.thickness, 30); % 求解PDE(保持原模型) sol = pdepe(0, @pdefun, @icfun, @bcfun, xmesh, t, [], params, oven_config, v); % 中心点温度 T = sol(:, round(end/2)); end % ============== 以下保持原PDE模型不变 ============== function [c, f, s] = pdefun(x, t, u, dudx, params, oven_config, v) y = v * t; zone_idx = get_zone_index(y, params.boundaries); a = params.a(zone_idx); c = 1; f = a * dudx; s = 0; end function u0 = icfun(x, params, ~, ~) u0 = params.initial_temp; end function [pl, ql, pr, qr] = bcfun(xl, ul, xr, ur, t, params, oven_config, v) y = v * t; zone_idx = get_zone_index(y, params.boundaries); T_ext = get_oven_temperature(y, oven_config); beta = params.beta(zone_idx); pl = -beta * (ul - T_ext); ql = 1; pr = beta * (ur - T_ext); qr = 1; end function zone_idx = get_zone_index(y, boundaries) if y < boundaries(3) zone_idx = 1; % 预热区 elseif y < boundaries(6) zone_idx = 2; % 恒温区 elseif y < boundaries(8) zone_idx = 3; % 升温区 elseif y < boundaries(14) zone_idx = 4; % 回流区 else zone_idx = 5; % 冷却区 end end function T_ext = get_oven_temperature(y, oven_config) boundaries = [0, 0.05, 0.30, 0.605, 1.665, 1.92, 2.07, 2.275, 2.425, 2.63, 2.78, 3.085, 3.235, 3.49, 3.64, 4.25, 4.355]; temps = oven_config.temperatures; % 检查过渡区 for i = 1:length(oven_config.transition_zones) tz = oven_config.transition_zones(i); if y >= tz.start && y < tz.end T_ext = tz.from + (tz.to - tz.from) * (y - tz.start)/(tz.end - tz.start); return; end end % 恒定温区 if y < boundaries(3) T_ext = temps(2); elseif y < boundaries(6) T_ext = temps(2); elseif y < boundaries(8) T_ext = temps(6); elseif y < boundaries(10) T_ext = temps(7); elseif y < boundaries(14) T_ext = temps(8); else T_ext = temps(10); end end % ============== PDE模型结束 ============== function display_results(T_set, v, area, asymmetry, constraints, t, T) % 显示优化结果 fprintf('\n===== 最优炉温参数配置 =====\n'); fprintf('预热区温度: %.1f°C (温区1-5)\n', T_set(1)); fprintf('升温区温度: %.1f°C (温区6)\n', T_set(2)); fprintf('回流区温度: %.1f°C (温区7-8)\n', T_set(3)); fprintf('冷却区温度: %.1f°C (温区9)\n', T_set(4)); fprintf('传送带速度: %.1f cm/min\n', v); fprintf('阴影面积: %.2f °C·s\n', area); fprintf('不对称性: %.2f s\n', asymmetry); % 显示约束状态 fprintf('\n===== 制程界限约束状态 =====\n'); fprintf('温度上升斜率: %s (%.2f ≤ 3°C/s)\n', ... bool2str(constraints.rise_slope_ok), constraints.max_rise_slope); fprintf('温度下降斜率: %s (%.2f ≥ -3°C/s)\n', ... bool2str(constraints.fall_slope_ok), constraints.min_fall_slope); fprintf('150-190℃时间: %s (%.1fs ∈ [60, 120]s)\n', ... bool2str(constraints.time_150_190_ok), constraints.time_150_190); fprintf('217℃以上时间: %s (%.1fs ∈ [40, 90]s)\n', ... bool2str(constraints.time_above_217_ok), constraints.time_above_217); fprintf('峰温度: %s (%.1f°C ∈ [240, 250]°C)\n', ... bool2str(constraints.peak_temp_ok), constraints.peak_temp); fprintf('所有约束: %s\n', bool2str(constraints.all_ok)); % 绘制最终炉温曲线 plot_temperature_curve(t, T, area, asymmetry, T_set, v); end function str = bool2str(b) if b str = '✓ 满足'; else str = '✗ 违反'; end end function plot_temperature_curve(t, T, area, asymmetry, T_set, v) % 创建专业图表 figure('Position', [100, 100, 1200, 700]); % 1. 主温度曲线 plot(t, T, 'b-', 'LineWidth', 2, 'DisplayName', '温度曲线'); hold on; % 2. 标识关键温度线 yline(217, 'g--', 'LineWidth', 2, 'DisplayName', '217℃'); [peak_temp, peak_idx] = max(T); yline(peak_temp, 'r--', 'LineWidth', 2, 'DisplayName', '峰温度'); % 3. 标记阴影区域 above_217 = T > 217; start_idx = find(diff(above_217) > 0, 1) + 1; end_idx = find(diff(above_217) < 0, 1, 'last'); if ~isempty(start_idx) && ~isempty(end_idx) && start_idx < end_idx fill([t(start_idx), t(start_idx:end_idx), t(end_idx)], ... [217, T(start_idx:end_idx)', 217], 'm', ... 'FaceAlpha', 0.2, 'EdgeColor', 'none', 'DisplayName', '217℃以上区域'); end % 4. 标记关键点 plot(t(peak_idx), peak_temp, 'ro', 'MarkerSize', 8, 'MarkerFaceColor', 'r', 'DisplayName', '峰温度点'); text(t(peak_idx), peak_temp + 20, sprintf('峰: %.1f°C', peak_temp), ... 'HorizontalAlignment', 'center', 'FontSize', 12, 'BackgroundColor', 'white'); % 5. 添加面积和不对称性标签 text(mean(t(start_idx:end_idx)), 230, sprintf('面积: %.2f °C·s\n不对称性: %.2f s', area, asymmetry), ... 'HorizontalAlignment', 'center', 'FontSize', 12, 'BackgroundColor', 'white'); % 6. 添加对称性示意图 if asymmetry > 0 plot([t(start_idx), t(peak_idx)], [225, 225], 'k-', 'LineWidth', 2); plot([t(peak_idx), t(end_idx)], [225, 225], 'k-', 'LineWidth', 2); text(mean([t(start_idx), t(peak_idx)]), 228, sprintf('t_L: %.1fs', t(peak_idx)-t(start_idx)), ... 'HorizontalAlignment', 'center', 'FontSize', 10); text(mean([t(peak_idx), t(end_idx)]), 228, sprintf('t_R: %.1fs', t(end_idx)-t(peak_idx)), ... 'HorizontalAlignment', 'center', 'FontSize', 10); end % 7. 图形美化 title('最优炉温曲线 (面积最小化 + 对称性优化)', 'FontSize', 16); xlabel('时间 (s)', 'FontSize', 14); ylabel('温度 (°C)', 'FontSize', 14); grid on; set(gca, 'FontSize', 12); legend('Location', 'northwest'); xlim([0, max(t)]); ylim([0, max(T)*1.1]); % 8. 添加数据框 data_text = { sprintf('预热区温度: %.1f°C', T_set(1)) sprintf('升温区温度: %.1f°C', T_set(2)) sprintf('回流区温度: %.1f°C', T_set(3)) sprintf('冷却区温度: %.1f°C', T_set(4)) sprintf('传送带速度: %.1f cm/min', v) sprintf('阴影面积: %.2f °C·s', area) sprintf('不对称性: %.2f s', asymmetry) }; annotation('textbox', [0.7, 0.15, 0.25, 0.18], 'String', data_text, ... 'FitBoxToText', 'on', 'BackgroundColor', 'white', 'FontSize', 10); end修改代码中出错的部分
最新发布
08-14
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值