HDU 2035

Problem Description

求A^B的最后三位数表示的整数。
说明:A^B的含义是“A的B次方”
Input
输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A=0, B=0,则表示输入数据的结束,不做处理。
Output
对于每个测试实例,请输出A^B的最后三位表示的整数,每个输出占一行。
Sample Input
2 3
12 6
6789 10000
0 0
Sample Output
8
984
1

这个题目注意两点:

(1)取a的后三位计算即可: a%1000

(2)会使用取模定理: (a*b)%1000 == ((a%1000) * (b%1000)) % 1000

如果,不考虑(2)的话,会溢出(long long都会溢出).

#include <iostream>

using namespace std;

int main () {
int a, b, i, t;
while(cin >> a >> b, a|b) {
t = 1;
for(int i = 0; i < b; i++) {
t = (a%1000)*(t%1000)%1000;
}
cout << t << endl;
}
return 0;
}

下面这种是根据快速幂运算的算法进行的修改。

因为当A和B非常大时,就超出int的范围了。所以这题考的是数学技巧。首先,45896的7次方的后三位和896的7次方的后三位是一样的。所以对于输入的A进行%1000的处理。


#include
 <iostream>
using namespace
std;

int
play(intn,intm)
{

<wbr><wbr><wbr>if</wbr></wbr></wbr>
(m==1)
<wbr><wbr><wbr>return</wbr></wbr></wbr>
(n%1000);
<wbr><wbr><wbr>else if</wbr></wbr></wbr>
(m%2==0)
<wbr><wbr><wbr>{</wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>int</wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
x;
<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>x<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">=</span></strong>play<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">(</span></strong>n<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">,</span></strong>m<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">/</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">2</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">);</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>x<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">%=</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">1000</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">;</span></strong></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>return</wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
((x*x)%1000);
<wbr><wbr><wbr>}</wbr></wbr></wbr>

<wbr><wbr><wbr>else</wbr></wbr></wbr>

<wbr><wbr><wbr>{</wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr><wbr>int</wbr></wbr></wbr></wbr></wbr></wbr></wbr>
s;<wbr><br><wbr><wbr><wbr><wbr><wbr><wbr><wbr>s<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">=</span></strong>play<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">(</span></strong>n<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">,</span></strong>m<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">/</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">2</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">);</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr><wbr>s<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">%=</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">1000</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">;</span></strong></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
<wbr><wbr><wbr><wbr><wbr><wbr><wbr>return</wbr></wbr></wbr></wbr></wbr></wbr></wbr>
((n*s*s)%1000);
<wbr><wbr><wbr>}<br> }</wbr></wbr></wbr>

int
main()
{

<wbr><wbr><wbr>int</wbr></wbr></wbr>
a,b;
<wbr><wbr><wbr>while</wbr></wbr></wbr>
(cin>>a>>b)
<wbr><wbr><wbr>{</wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr>if</wbr></wbr></wbr></wbr></wbr></wbr>
(a==0&&b==0)
<wbr><wbr><wbr><wbr><wbr><wbr>break</wbr></wbr></wbr></wbr></wbr></wbr>
;
<wbr><wbr><wbr><wbr><wbr><wbr>int</wbr></wbr></wbr></wbr></wbr></wbr>
sum(0);
<wbr><wbr><wbr><wbr><wbr><wbr>a<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">%=</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">1000</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">;</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr>sum<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">=</span></strong>play<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">(</span></strong>a<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">,</span></strong>b<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">);</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr>cout<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">&lt;&lt;</span></strong>sum<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">&lt;&lt;</span></strong>endl</wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
;
<wbr><wbr><wbr>}</wbr></wbr></wbr>

<wbr><wbr><wbr>return</wbr></wbr></wbr>
0;
}

什么是对快速求幂运算算法的一个修改

内容概要:本文介绍了基于Koopman算子理论的模型预测控制(MPC)方法,用于非线性受控动力系统的状态估计与预测。通过将非线性系统近似为线性系统,利用数据驱动的方式构建Koopman观测器,实现对系统动态行为的有效建模与预测,并结合Matlab代码实现具体仿真案例,展示了该方法在处理复杂非线性系统中的可行性与优势。文中强调了状态估计在控制系统中的关键作用,特别是面对不确定性因素时,Koopman-MPC框架能够提供更为精确的预测性能。; 适合人群:具备一定控制理论基础和Matlab编程能力的研【状态估计】非线性受控动力系统的线性预测器——Koopman模型预测MPC(Matlab代码实现)究生、科研人员及从事自动化、电气工程、机械电子等相关领域的工程师;熟悉非线性系统建模与控制、对先进控制算法如MPC、状态估计感兴趣的技术人员。; 使用场景及目标:①应用于非线性系统的建模与预测控制设计,如机器人、航空航天、能源系统等领域;②用于提升含不确定性因素的动力系统状态估计精度;③为研究数据驱动型控制方法提供可复现的Matlab实现方案,促进理论与实际结合。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注Koopman算子的构造、观测器设计及MPC优化求解部分,同时可参考文中提及的其他相关技术(如卡尔曼滤波、深度学习等)进行横向对比研究,以深化对该方法优势与局限性的认识。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值