HDU 2035

Problem Description

求A^B的最后三位数表示的整数。
说明:A^B的含义是“A的B次方”
Input
输入数据包含多个测试实例,每个实例占一行,由两个正整数A和B组成(1<=A,B<=10000),如果A=0, B=0,则表示输入数据的结束,不做处理。
Output
对于每个测试实例,请输出A^B的最后三位表示的整数,每个输出占一行。
Sample Input
2 3
12 6
6789 10000
0 0
Sample Output
8
984
1

这个题目注意两点:

(1)取a的后三位计算即可: a%1000

(2)会使用取模定理: (a*b)%1000 == ((a%1000) * (b%1000)) % 1000

如果,不考虑(2)的话,会溢出(long long都会溢出).

#include <iostream>

using namespace std;

int main () {
int a, b, i, t;
while(cin >> a >> b, a|b) {
t = 1;
for(int i = 0; i < b; i++) {
t = (a%1000)*(t%1000)%1000;
}
cout << t << endl;
}
return 0;
}

下面这种是根据快速幂运算的算法进行的修改。

因为当A和B非常大时,就超出int的范围了。所以这题考的是数学技巧。首先,45896的7次方的后三位和896的7次方的后三位是一样的。所以对于输入的A进行%1000的处理。

 
#include <iostream>
using namespace
std;

int
play(intn,intm)
{

<wbr><wbr><wbr>if</wbr></wbr></wbr>
(m==1)
<wbr><wbr><wbr>return</wbr></wbr></wbr>
(n%1000);
<wbr><wbr><wbr>else if</wbr></wbr></wbr>
(m%2==0)
<wbr><wbr><wbr>{</wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>int</wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
x;
<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>x<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">=</span></strong>play<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">(</span></strong>n<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">,</span></strong>m<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">/</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">2</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">);</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>x<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">%=</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">1000</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">;</span></strong></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr><wbr><wbr>return</wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
((x*x)%1000);
<wbr><wbr><wbr>}</wbr></wbr></wbr>

<wbr><wbr><wbr>else</wbr></wbr></wbr>

<wbr><wbr><wbr>{</wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr><wbr>int</wbr></wbr></wbr></wbr></wbr></wbr></wbr>
s;<wbr><br><wbr><wbr><wbr><wbr><wbr><wbr><wbr>s<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">=</span></strong>play<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">(</span></strong>n<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">,</span></strong>m<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">/</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">2</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">);</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr><wbr>s<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">%=</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">1000</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">;</span></strong></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
<wbr><wbr><wbr><wbr><wbr><wbr><wbr>return</wbr></wbr></wbr></wbr></wbr></wbr></wbr>
((n*s*s)%1000);
<wbr><wbr><wbr>}<br> }</wbr></wbr></wbr>

int
main()
{

<wbr><wbr><wbr>int</wbr></wbr></wbr>
a,b;
<wbr><wbr><wbr>while</wbr></wbr></wbr>
(cin>>a>>b)
<wbr><wbr><wbr>{</wbr></wbr></wbr>

<wbr><wbr><wbr><wbr><wbr><wbr>if</wbr></wbr></wbr></wbr></wbr></wbr>
(a==0&&b==0)
<wbr><wbr><wbr><wbr><wbr><wbr>break</wbr></wbr></wbr></wbr></wbr></wbr>
;
<wbr><wbr><wbr><wbr><wbr><wbr>int</wbr></wbr></wbr></wbr></wbr></wbr>
sum(0);
<wbr><wbr><wbr><wbr><wbr><wbr>a<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">%=</span></strong><span style="color:#CC3300; word-wrap:normal; word-break:normal; line-height:24px">1000</span><strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">;</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr>sum<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">=</span></strong>play<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">(</span></strong>a<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">,</span></strong>b<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">);</span></strong><br><wbr><wbr><wbr><wbr><wbr><wbr>cout<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">&lt;&lt;</span></strong>sum<strong><span style="color:#FF00FF; word-wrap:normal; word-break:normal; line-height:24px">&lt;&lt;</span></strong>endl</wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr></wbr>
;
<wbr><wbr><wbr>}</wbr></wbr></wbr>

<wbr><wbr><wbr>return</wbr></wbr></wbr>
0;
}

什么是对快速求幂运算算法的一个修改

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值