算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !
今天和大家聊的问题叫做 最小好进制,我们先来看题面:
https://leetcode-cn.com/problems/smallest-good-base/
Given an integer n represented as a string, return the smallest good base of n.
We call k >= 2 a good base of n, if all digits of n base k are 1's.
对于给定的整数 n, 如果n的k(k>=2)进制数的所有数位全为1,则称 k(k>=2)是 n 的一个好进制。
以字符串的形式给出 n, 以字符串的形式返回 n 的最小好进制。
示例
示例 1:
输入:"13"
输出:"3"
解释:13 的 3 进制是 111。
示例 2:
输入:"4681"
输出:"8"
解释:4681 的 8 进制是 11111。
示例 3:
输入:"1000000000000000000"
输出:"999999999999999999"
解释:1000000000000000000 的 999999999999999999 进制是 11。
解题
https://www.cnblogs.com/kexinxin/p/10372481.html
本题是寻找一个数最小的good base。其定义是对于一个数y,其x进制表示为全1,则称x是y的good base。应该比较好理解,其实就是将y写成1+x+x^2+...+x^(n-1),就是一个等比数列求和,于是我们可以将其转化为y = (x^n - 1)/(x - 1),其中x>=2, 3<y<10^18,为了寻找最小的x,我们可以先来确定一下n的取值范围,很明显x越小n越大,所以当x=2时,n最大为log2(y+1)。从第三个例子可以看出来,当x=y-1时,n最小为2。所以有了n的取值范围我们就可以遍历所有可能的n,然后每次循环中y和n都是确定值,在对x使用二叉搜索确定其值即可。
另外一个需要注意的问题就是,因为本题中的数都比较大,所以要注意溢出问题,之前也做过一到这种题,可以使用java内置的BigInteger类进行处理。代码如下所示:
import java.math.BigInteger;
class Solution {
public static String smallestGoodBase(String n) {
//现将字符串解析成long型数据
long s = Long.parseLong(n);
//对所有可能的指数n进行遍历
for (int max_e = (int) (Math.log(s) / Math.log(2)) + 1; max_e >= 2; max_e--) {
long low = 2, high = s, mid;
//进行二叉搜索,寻找最小的good base。
while (low <= high) {
mid = low + (high - low) / 2;
//一开始没有使用BigInteger,会报错
BigInteger left = BigInteger.valueOf(mid);
left = left.pow(max_e).subtract(BigInteger.ONE);
BigInteger right = BigInteger.valueOf(s).multiply(BigInteger.valueOf(mid).subtract(BigInteger.ONE));
int cmr = left.compareTo(right);
if (cmr == 0)
return String.valueOf(mid);
else if (cmr > 0)
high = mid - 1;
else
low = mid + 1;
}
}
return String.valueOf(s - 1);
}
}
好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力 。
上期推文: