“算法复杂度”其实并没有那么复杂

算法是用于解决特定问题的一系列的执行步骤。使用不同算法,解决同一个问题,效率可能相差非常大。为了对算法的好坏进行评价,我们引入 “算法复杂度” 的概念。

1、引例:斐波那契数列(Fibonacci sequence)

已知斐波那契数列:,求它的通项公式

求解斐波那契数列的方法有很多种,这里只介绍两种:递归法和平推法。

package com.atangbiji;


public class Main {


	public static void main(String[] args) {
		// 输出通项F(n)
		System.out.println(fib1(1));
		System.out.println(fib1(2));
		System.out.println(fib1(3));
		System.out.println(fib1(4));
		System.out.println(fib1(5));
		
		System.out.println(fib2(70));
	}
	
	/*
	 * 求斐波那契数列(Fibonacci sequence)
	 * F(1)=1,F(2)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)的通项F(n).
	 */
	


	/*
	 *  方法一:递归法
	 *  最高支持 n = 92 ,否则超出 Long.MAX_VALUE
	 * @param n 
	 * @return f(n) 
	 * */
	
	public static long fib1(int n) {
		if (n < 1 || n > 92)
	        return 0;
		if (n < 3)
			return 1;
		
		return fib1(n - 1) + fib1(n - 2);
	}
	
	/*
	 *  方法二:平推法
	 *  最高支持 n = 92 ,否则超出 Long.MAX_VALUE
	 * @param n 
	 * @return f(n) 
	 * */
	public static long fib2(int n) {
		if (n < 1 || n > 92)
	        return 0;


		//n:    1 2 3 4 5 ……
		//F(n): 1 1 2 3 5 ……
		long first = 1;
		long second = 1;
		for (int i = 3; i <= n; i++) {
			long sum = first + second;
			first = second;
			second = sum;
		}
		return second;
	}


}


通过测试,我们可以发现:当n的取值较大时(如:n = 60),若采用递推法计算则会发现迟迟不出结果,若采用平推法计算则可以秒出结果。由此可见, 平推法的效率明显高于递推法。

2、如何评估算法的好坏?

  • 正确性

  • 可读性

  • 健壮性:对不合理输入的反应能力和处理能力。

  • 时间复杂度(time complexity): 估算程序指令的执行次数(执行时间)。

  • 空间复杂度(space complexity): 估算所需占用的存储空间。

注:一般情况下,我们主要考虑算法的时间复杂度。 (因为目前计算机的内存一般都比较大)

3、时间复杂度的估算

我们可以用程序指令的执行次数来估算时间复杂度。例如:

(1)函数test1

public static void test1(int n) {
	//总执行次数 = 14
	
	// 1(判断语句可以忽略)
	if (n > 10) {
		System.out.println("n > 10");
	} else if (n > 5) {
		System.out.println("n > 5");
	} else {
		System.out.println("n <= 5");
	}
	
	// 1 + 4 + 4 + 4
	for (int i = 0; i < 4; i++) {
		System.out.println("test");
	}
}

(2)函数test2

public static void test2(int n) {
	//总执行次数 = 1 + 3n
	
	//1 + n + n + n
	for (int i = 0; i < n; i++) {
		System.out.println("test");
	}
}

(3)函数test3

public static void test3(int n) {
	//总执行次数 = 48n + 1
	
	// 1 + 2n + n * (1 + 45)
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < 15; j++) { // 1 + 15 + 15 + 15
			System.out.println("test");
		}
	}
}

(4)函数test4

public static void test4(int n) {
	//总执行次数 = 3n^2 +3n +1
	
	// 1 + 2n + n * (1 + 3n)
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) { // 1 + n + n + n
			System.out.println("test");
		}
	}
}

(5)★ 函数test5

public static void test5(int n) {
	//总执行次数 = log2(n)
	
	/*
	 * n = 2 , 执行 1 次
	 * n = 4 , 执行 2 次
	 * n = 8 , 执行 3 次 
	 * */
	while ((n = n/2) > 0) { // 倍速减小
		System.out.println("test"); // 只考虑这一句的执行次数
	}
}

(6)函数test6

public static void test6(int n) {
	//总执行次数 = log5(n)
	while ((n = n/5) > 0) {
		System.out.println("test"); // 只考虑这一句的执行次数
	}
}

(7)函数test7

public static void test7(int n) {
	//总执行次数 = 3n*log2(n) + 3log2(n) + 1
	
	// 1 + 2 * log2(n) + log2(n) * (1 + 3n)
	/*
	 * n = 2 , 执行 1 次
	 * n = 4 , 执行 2 次
	 * n = 8 , 执行 3 次 
	 * */
	for (int i = 1; i < n; i += i) { // i = i + i = i * 2(倍速增大)
		for (int j = 0; j < n; j++) { // 1 + n + n + n
			System.out.println("test");
		}
	}
}

4、大O表示法

为了进一步简化复杂度的计算,我们一般使用大O表示法来描述时间(或空间)复杂度。它表示的是 数据规模为n 时算法所对应的复杂度。

大O表示法的性质:

(1)可以忽略常数、常系数和低阶项。

(2)对数阶一般省略底数,统称

注:大O表示法仅仅只是一种粗略的分析模型,是一种估算。 它能帮我们快速了解一个算法的执行效率。

5、常见的复杂度

其中:

  • 当数据规模较小时, 各复杂度对应的曲线如下图所示。

  • 当数据规模较大时, 各复杂度对应的曲线如下图所示。

所以,当数据规模比较大时,复杂度为 我们就很难接受了。

6、斐波那契数算法复杂度分析

(1)递归法

public static long fib1(int n) {
	if (n < 1 || n > 92)
        return 0;
	if (n < 3)
		return 1;
	
	return fib1(n - 1) + fib1(n - 2);
}

假设计算 的值已经得到,我们可以发现该函数每次执行的时间主要取决于求和运算。因此,该算法函数指令的执行次数等价于该函数被递归调用次数。

时,该函数的调用过程如下图所示。

所以,该函数被递归调用的次数 二叉树的节点数。

即:。

因此,该算法的复杂度为

注: 细心的同学可能会发现,当 时,函数被递归调用的次数并不完全等于

这里需要说明的是:复杂度是一种估算,我们关心的不是具体的数值,而是量级和趋势。 所以, 呈指数级增长的趋势是毋庸置疑的。

(2)平推法

public static long fib2(int n) {
	if (n < 1 || n > 92)
        return 0;
	//n:    1 2 3 4 5 ……
	//F(n): 1 1 2 3 5 ……
	long first = 1;
	long second = 1;
	for (int i = 3; i <= n; i++) {
		long sum = first + second;
		first = second;
		second = sum;
	}
	return second;
}

显然,平推法的时间复杂度为

7、算法的优化方向

(1)用尽量少的执行步骤(运行时间)。

(2)用尽量少的存储空间。

(3)根据情况,空间换时间或者时间换空间。

更多关于复杂度的知识,我们会在后续数据结构和算法的设计与实现过程中穿插讲解。

(本讲完,系列博文持续更新中…… )


参考文献:

  • 《恋上数据结构与算法》,小码哥MJ

  • 《数据结构与算法》,邓俊辉

更多Java和算法教程,关注下面公众号:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值