Partitioner分区类的作用是什么?
在进行MapReduce计算时,有时候需要把最终的输出数据分到不同的文件中,比如按照省份划分的话,需要把同一省份的数据放到一个文件中;按照性别划分的话,需要把同一性别的数据放到一个文件中。我们知道最终的输出数据是来自于Reducer任务。那么,如果要得到多个文件,意味着有同样数量的Reducer任务在运行。Reducer任务的数据来自于Mapper任务,也就说Mapper任务要划分数据,对于不同的数据分配给不同的Reducer任务运行。Mapper任务划分数据的过程就称作Partition。负责实现划分数据的类称作Partitioner。
getPartition()三个参数分别是什么?
getPartition()方法有三个形参,key、value分别指的是Mapper任务的输出,numReduceTasks指的是设置的Reducer任务数量,默认值是1。那么任何整数与1相除的余数肯定是0。也就是说getPartition(…)方法的返回值总是0。也就是Mapper任务的输出总是送给一个Reducer任务,最终只能输出到一个文件中。
总结
(Partition)分区出现的必要性,如何使用Hadoop产生一个全局排序的文件?最简单的方法就是使用一个分区,但是该方法在处理大型文件时效率极低,因为一台机器必须处理所有输出文件,从而完全丧失了MapReduce所提供的并行架构的优势。事实上我们可以这样做,首先创建一系列排好序的文件;其次,串联这些文件(类似于归并排序);最后得到一个全局有序的文件。主要的思路是使用一个partitioner来描述全局排序的输出。比方说我们有1000个1-10000的数据,跑10个ruduce任务, 如果我们运行进行partition的时候,能够将在1-1000中数据的分配到第一个reduce中,1001-2000的数据分配到第二个reduce中,以此类推。即第n个reduce所分配到的数据全部大于第n-1个reduce中的数据。这样,每个reduce出来之后都是有序的了,我们只要cat所有的输出文件,变成一个大的文件,就都是有序的了。
基本思路就是这样,但是现在有一个问题,就是数据的区间如何划分,在数据量大,还有我们并不清楚数据分布的情况下。一个比较简单的方法就是采样,假如有一亿的数据,我们可以对数据进行采样,如取10000个数据采样,然后对采样数据分区间。在Hadoop中,patition我们可以用TotalOrderPartitioner替换默认的分区。然后将采样的结果传给他,就可以实现我们想要的分区。在采样时,我们可以使用hadoop的几种采样工具,RandomSampler,InputSampler,IntervalSampler。
这样,我们就可以对利用分布式文件系统进行大数据量的排序了,我们也可以重写Partitioner类中的compare函数,来定义比较的规则,从而可以实现字符串或其他非数字类型的排序,也可以实现二次排序乃至多次排序。