Spring AI与RAG技术实战:构建企业级智能文档问答系统
引言
在人工智能技术飞速发展的今天,企业面临着海量文档管理和知识检索的挑战。传统的基于关键词的搜索方式已经无法满足用户对精准、智能问答的需求。Spring AI结合RAG(检索增强生成)技术,为企业提供了构建智能文档问答系统的强大解决方案。本文将深入探讨如何利用Spring AI框架和RAG技术构建高效、准确的企业级智能问答系统。
技术架构概述
Spring AI框架
Spring AI是Spring生态系统中的AI集成框架,提供了统一的API来访问各种AI模型和服务。它支持OpenAI、Azure OpenAI、Amazon Bedrock等多种AI服务提供商,并提供了简洁的编程模型。
RAG技术原理
RAG(Retrieval-Augmented Generation)是一种结合信息检索和文本生成的技术。其核心思想是:
- 首先从知识库中检索与问题相关的文档片段
- 然后将检索到的上下文与原始问题一起提供给大语言模型
- 最后生成基于检索内容的准确回答
系统设计与实现
环境准备
首先,我们需要配置Spring AI依赖:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>0.8.1</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-transformers-spring-boot-starter</artifactId>
<version>0.8.1</version>
</dependency>
文档处理模块
文档加载与分割
@Component
public class DocumentProcessor {
@Autowired
private TextSplitter textSplitter;
public List<Document> processDocument(Resource resource) {
// 加载文档
DocumentReader reader = new PdfDocumentReader();
Document document = reader.read(resource);
// 分割文档为小块
return textSplitter.split(document);
}
// 支持多种文档格式
public DocumentReader getDocumentReader(String fileType) {
switch (fileType.toLowerCase()) {
case "pdf":
return new PdfDocumentReader();
case "docx":
return new DocxDocumentReader();
case "txt":
return new TextDocumentReader();
default:
throw new IllegalArgumentException("Unsupported file type: " + fileType);
}
}
}
向量化与存储
向量数据库集成
@Configuration
public class VectorStoreConfig {
@Value("${spring.ai.vectorstore.milvus.host}")
private String milvusHost;
@Value("${spring.ai.vectorstore.milvus.port}")
private int milvusPort;
@Bean
public VectorStore vectorStore(EmbeddingModel embeddingModel) {
MilvusVectorStoreConfig config = MilvusVectorStoreConfig.builder()
.host(milvusHost)
.port(milvusPort)
.collectionName("enterprise_docs")
.dimension(1536) // OpenAI embedding dimension
.build();
return new MilvusVectorStore(config, embeddingModel);
}
@Bean
public EmbeddingModel embeddingModel() {
return new OpenAiEmbeddingModel(
OpenAiEmbeddingOptions.builder()
.withModel("text-embedding-ada-002")
.build()
);
}
}
RAG服务实现
核心RAG服务
@Service
public class RagService {
@Autowired
private VectorStore vectorStore;
@Autowired
private ChatClient chatClient;
public String answerQuestion(String question) {
// 1. 检索相关文档
List<Document> relevantDocs = retrieveRelevantDocuments(question);
// 2. 构建提示词
String context = buildContext(relevantDocs);
String prompt = buildPrompt(question, context);
// 3. 生成回答
return generateAnswer(prompt);
}
private List<Document> retrieveRelevantDocuments(String question) {
// 使用相似度搜索获取相关文档
return vectorStore.similaritySearch(
SearchRequest.builder()
.query(question)
.topK(5) // 获取最相关的5个文档片段
.build()
);
}
private String buildContext(List<Document> documents) {
StringBuilder contextBuilder = new StringBuilder();
for (Document doc : documents) {
contextBuilder.append(doc.getContent()).append("\n\n");
}
return contextBuilder.toString();
}
private String buildPrompt(String question, String context) {
return String.format("""
基于以下上下文信息,请回答用户的问题。
如果上下文中的信息不足以回答问题,请如实告知"我不知道"。
上下文:
%s
问题:%s
回答:
""", context, question);
}
private String generateAnswer(String prompt) {
ChatResponse response = chatClient.call(
new UserMessage(prompt)
);
return response.getResult().getOutput().getContent();
}
}
API接口设计
REST控制器
@RestController
@RequestMapping("/api/rag")
public class RagController {
@Autowired
private RagService ragService;
@PostMapping("/ask")
public ResponseEntity<ApiResponse<String>> askQuestion(
@RequestBody QuestionRequest request) {
try {
String answer = ragService.answerQuestion(request.getQuestion());
return ResponseEntity.ok(ApiResponse.success(answer));
} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(ApiResponse.error("处理问题时发生错误"));
}
}
@PostMapping("/upload")
public ResponseEntity<ApiResponse<String>> uploadDocument(
@RequestParam("file") MultipartFile file) {
try {
// 文档上传和处理逻辑
return ResponseEntity.ok(ApiResponse.success("文档上传成功"));
} catch (Exception e) {
return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
.body(ApiResponse.error("文档上传失败"));
}
}
}
@Data
class QuestionRequest {
private String question;
}
@Data
class ApiResponse<T> {
private boolean success;
private String message;
private T data;
public static <T> ApiResponse<T> success(T data) {
ApiResponse<T> response = new ApiResponse<>();
response.setSuccess(true);
response.setMessage("成功");
response.setData(data);
return response;
}
public static <T> ApiResponse<T> error(String message) {
ApiResponse<T> response = new ApiResponse<>();
response.setSuccess(false);
response.setMessage(message);
return response;
}
}
高级特性实现
多轮对话支持
@Service
public class ConversationService {
@Autowired
private RagService ragService;
private final Map<String, List<ChatMessage>> conversationMemory = new ConcurrentHashMap<>();
public String handleConversation(String sessionId, String userMessage) {
// 获取或创建会话历史
List<ChatMessage> history = conversationMemory.getOrDefault(sessionId, new ArrayList<>());
// 添加上下文到问题中
String contextualQuestion = buildContextualQuestion(userMessage, history);
// 获取回答
String answer = ragService.answerQuestion(contextualQuestion);
// 更新会话历史
history.add(new UserMessage(userMessage));
history.add(new AssistantMessage(answer));
// 限制历史记录长度
if (history.size() > 10) {
history = history.subList(history.size() - 10, history.size());
}
conversationMemory.put(sessionId, history);
return answer;
}
private String buildContextualQuestion(String currentQuestion, List<ChatMessage> history) {
if (history.isEmpty()) {
return currentQuestion;
}
StringBuilder contextBuilder = new StringBuilder();
contextBuilder.append("以下是之前的对话上下文:\n\n");
for (ChatMessage message : history) {
if (message instanceof UserMessage) {
contextBuilder.append("用户: ").append(message.getContent()).append("\n");
} else if (message instanceof AssistantMessage) {
contextBuilder.append("助手: ").append(message.getContent()).append("\n");
}
}
contextBuilder.append("\n当前问题: ").append(currentQuestion);
contextBuilder.append("\n请基于以上对话上下文回答当前问题。");
return contextBuilder.toString();
}
}
性能优化策略
缓存机制
@Configuration
@EnableCaching
public class CacheConfig {
@Bean
public CacheManager cacheManager() {
CaffeineCacheManager cacheManager = new CaffeineCacheManager();
cacheManager.setCaffeine(Caffeine.newBuilder()
.expireAfterWrite(30, TimeUnit.MINUTES)
.maximumSize(1000));
return cacheManager;
}
}
@Service
public class CachedRagService {
@Autowired
private RagService ragService;
@Cacheable(value = "answers", key = "#question")
public String getCachedAnswer(String question) {
return ragService.answerQuestion(question);
}
@CacheEvict(value = "answers", allEntries = true)
public void clearCache() {
// 缓存清除
}
}
异步处理
@EnableAsync
@Configuration
public class AsyncConfig {
@Bean
public TaskExecutor taskExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(10);
executor.setMaxPoolSize(20);
executor.setQueueCapacity(100);
executor.setThreadNamePrefix("rag-executor-");
executor.initialize();
return executor;
}
}
@Service
public class AsyncRagService {
@Autowired
private RagService ragService;
@Async
public CompletableFuture<String> answerQuestionAsync(String question) {
return CompletableFuture.completedFuture(ragService.answerQuestion(question));
}
}
部署与监控
Docker容器化
FROM openjdk:17-jdk-slim
WORKDIR /app
COPY target/rag-system-*.jar app.jar
EXPOSE 8080
ENTRYPOINT ["java", "-jar", "app.jar"]
Kubernetes部署配置
apiVersion: apps/v1
kind: Deployment
metadata:
name: rag-system
spec:
replicas: 3
selector:
matchLabels:
app: rag-system
template:
metadata:
labels:
app: rag-system
spec:
containers:
- name: rag-app
image: rag-system:latest
ports:
- containerPort: 8080
env:
- name: SPRING_AI_OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: openai-secret
key: api-key
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "1000m"
---
apiVersion: v1
kind: Service
metadata:
name: rag-service
spec:
selector:
app: rag-system
ports:
- port: 80
targetPort: 8080
type: LoadBalancer
监控配置
management:
endpoints:
web:
exposure:
include: health,metrics,prometheus
metrics:
export:
prometheus:
enabled: true
endpoint:
health:
show-details: always
spring:
ai:
openai:
api-key: ${OPENAI_API_KEY}
vectorstore:
milvus:
host: localhost
port: 19530
最佳实践与注意事项
1. 数据安全与隐私
- 对敏感文档进行脱敏处理
- 实施访问控制机制
- 定期审计系统日志
2. 模型选择与调优
- 根据业务需求选择合适的Embedding模型
- 调整相似度阈值以提高检索精度
- 定期评估和优化提示词模板
3. 系统可扩展性
- 采用微服务架构设计
- 实现水平扩展能力
- 设计容错和降级机制
4. 用户体验优化
- 提供实时反馈机制
- 实现多语言支持
- 优化响应时间
总结
本文详细介绍了如何使用Spring AI和RAG技术构建企业级智能文档问答系统。通过合理的架构设计、性能优化和部署策略,我们可以构建出高效、准确、可扩展的智能问答解决方案。这种技术组合不仅提升了企业的知识管理效率,也为用户提供了更加智能和便捷的问答体验。
随着AI技术的不断发展,Spring AI和RAG技术的结合将在企业智能化转型中发挥越来越重要的作用。开发者应该持续关注相关技术的最新进展,不断优化和改进现有的解决方案。

被折叠的 条评论
为什么被折叠?



