Spring AI与RAG技术实战:构建企业级智能文档问答系统
引言
随着人工智能技术的快速发展,企业对于智能化文档处理的需求日益增长。传统的文档检索方式已经无法满足用户对于精准、智能问答的需求。Spring AI结合RAG(Retrieval-Augmented Generation)技术,为企业提供了一种全新的智能文档问答解决方案。本文将详细介绍如何基于Spring AI框架构建企业级智能文档问答系统。
技术栈概述
Spring AI框架
Spring AI是Spring生态系统中的AI集成框架,提供了统一的API来访问各种AI模型和服务。它支持OpenAI、Azure OpenAI、Google Vertex AI等多种AI服务提供商。
RAG技术原理
RAG(检索增强生成)技术结合了信息检索和文本生成的优势。其核心思想是:
- 首先从大量文档中检索出与问题相关的信息
- 然后将检索到的信息作为上下文提供给生成模型
- 最后生成模型基于上下文生成准确的回答
系统架构设计
整体架构
+----------------+ +----------------+ +----------------+
| 用户界面层 | | 应用服务层 | | 数据存储层 |
| - Web前端 | | - Spring AI | | - 向量数据库 |
| - 移动端 | | - RAG服务 | | - 文档存储 |
+----------------+ +----------------+ +----------------+
| | |
| HTTP/REST | API调用 | 数据访问
v v v
+-------------------------------------------------------------+
| 智能问答引擎 |
| - 语义检索 - 上下文构建 - 回答生成 |
+-------------------------------------------------------------+
核心组件
1. 文档处理模块
@Component
public class DocumentProcessor {
@Autowired
private EmbeddingModel embeddingModel;
@Autowired
private VectorStore vectorStore;
public void processDocument(String documentId, String content) {
// 文档分块
List<DocumentChunk> chunks = splitDocument(content);
// 生成向量嵌入
List<Embedding> embeddings = generateEmbeddings(chunks);
// 存储到向量数据库
storeToVectorDB(documentId, chunks, embeddings);
}
private List<DocumentChunk> splitDocument(String content) {
// 实现文档分块逻辑
return TextSplitter.split(content, 1000); // 每块1000字符
}
}
2. 语义检索模块
@Service
public class SemanticSearchService {
@Autowired
private VectorStore vectorStore;
@Autowired
private EmbeddingModel embeddingModel;
public List<SearchResult> search(String query, int topK) {
// 生成查询向量
Embedding queryEmbedding = embeddingModel.embed(query);
// 向量相似度搜索
return vectorStore.similaritySearch(queryEmbedding, topK);
}
}
3. 问答生成模块
@Service
public class QAService {
@Autowired
private ChatClient chatClient;
@Autowired
private SemanticSearchService searchService;
public String answerQuestion(String question) {
// 检索相关文档
List<SearchResult> relevantDocs = searchService.search(question, 5);
// 构建提示词
String prompt = buildPrompt(question, relevantDocs);
// 生成回答
return chatClient.generate(prompt);
}
private String buildPrompt(String question, List<SearchResult> docs) {
StringBuilder context = new StringBuilder();
for (SearchResult doc : docs) {
context.append("文档内容: ").append(doc.getContent()).append("\n\n");
}
return String.format("""
基于以下文档内容,请回答这个问题: %s
%s
请根据上述文档内容提供准确的回答。如果文档中没有相关信息,请说明无法回答。
""", question, context.toString());
}
}
向量数据库集成
Milvus向量数据库配置
spring:
ai:
vectorstore:
milvus:
host: localhost
port: 19530
collection-name: document_vectors
metric-type: COSINE
index-type: IVF_FLAT
Redis作为向量存储
@Configuration
public class VectorStoreConfig {
@Bean
public VectorStore redisVectorStore(RedisConnectionFactory connectionFactory) {
return new RedisVectorStore(connectionFactory, "document_vectors");
}
}
Embedding模型集成
OpenAI Embedding
spring:
ai:
openai:
api-key: ${OPENAI_API_KEY}
embedding:
model: text-embedding-ada-002
本地Ollama模型
spring:
ai:
ollama:
base-url: http://localhost:11434
embedding:
model: nomic-embed-text
企业级特性实现
1. 多租户支持
@Service
public class MultiTenantQAService {
@Autowired
private TenantContext tenantContext;
public String answerQuestion(String question, String tenantId) {
tenantContext.setCurrentTenant(tenantId);
// 使用租户特定的向量存储
VectorStore tenantVectorStore = getTenantVectorStore(tenantId);
// 执行检索和生成
return generateAnswer(question, tenantVectorStore);
}
}
2. 访问控制与审计
@Aspect
@Component
public class AuditAspect {
@AfterReturning(
pointcut = "execution(* com.example.service.QAService.answerQuestion(..))",
returning = "result"
)
public void auditQuestion(JoinPoint joinPoint, Object result) {
String question = (String) joinPoint.getArgs()[0];
String answer = (String) result;
// 记录审计日志
auditService.logQuestion(question, answer);
}
}
3. 性能监控
@RestController
public class QAController {
@Autowired
private Micrometer micrometer;
@PostMapping("/api/ask")
public ResponseEntity<String> askQuestion(@RequestBody QuestionRequest request) {
Timer.Sample sample = Timer.start();
try {
String answer = qaService.answerQuestion(request.getQuestion());
sample.stop(micrometer.timer("qa.response.time"));
return ResponseEntity.ok(answer);
} catch (Exception e) {
micrometer.counter("qa.errors").increment();
throw e;
}
}
}
部署与运维
Docker容器化部署
FROM openjdk:17-jdk-slim
WORKDIR /app
COPY target/qa-system.jar app.jar
EXPOSE 8080
ENTRYPOINT ["java", "-jar", "app.jar"]
Kubernetes部署配置
apiVersion: apps/v1
kind: Deployment
metadata:
name: qa-system
spec:
replicas: 3
template:
spec:
containers:
- name: qa-app
image: qa-system:latest
ports:
- containerPort: 8080
env:
- name: SPRING_AI_OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: openai-secret
key: api-key
---
apiVersion: v1
kind: Service
metadata:
name: qa-service
spec:
selector:
app: qa-system
ports:
- port: 80
targetPort: 8080
性能优化策略
1. 缓存优化
@Configuration
@EnableCaching
public class CacheConfig {
@Bean
public CacheManager cacheManager() {
return new CaffeineCacheManager("questions", "documents");
}
}
@Service
public class CachedQAService {
@Cacheable(value = "questions", key = "#question")
public String answerQuestion(String question) {
// 实际的问题回答逻辑
return qaService.answerQuestion(question);
}
}
2. 异步处理
@Async
public CompletableFuture<String> answerQuestionAsync(String question) {
return CompletableFuture.supplyAsync(() ->
qaService.answerQuestion(question)
);
}
3. 批量处理
public Map<String, String> answerQuestions(List<String> questions) {
return questions.parallelStream()
.collect(Collectors.toMap(
Function.identity(),
this::answerQuestion
));
}
安全考虑
1. 输入验证
@Validated
public class QuestionRequest {
@NotBlank
@Size(max = 1000)
private String question;
// getters and setters
}
2. 输出过滤
public String sanitizeAnswer(String answer) {
return HtmlUtils.htmlEscape(answer);
}
3. 速率限制
@RestController
@RateLimit(limit = 100, duration = 60) // 每分钟100次
public class QAController {
// controller methods
}
测试策略
单元测试
@ExtendWith(MockitoExtension.class)
class QAServiceTest {
@Mock
private SemanticSearchService searchService;
@Mock
private ChatClient chatClient;
@InjectMocks
private QAService qaService;
@Test
void testAnswerQuestion() {
// 准备测试数据
when(searchService.search(anyString(), anyInt())
.thenReturn(List.of(new SearchResult("相关文档内容")));
when(chatClient.generate(anyString())
.thenReturn("这是生成的回答");
// 执行测试
String result = qaService.answerQuestion("测试问题");
// 验证结果
assertEquals("这是生成的回答", result);
}
}
集成测试
@SpringBootTest
@AutoConfigureMockMvc
class QAControllerIntegrationTest {
@Autowired
private MockMvc mockMvc;
@Test
void testAskEndpoint() throws Exception {
mockMvc.perform(post("/api/ask")
.contentType(MediaType.APPLICATION_JSON)
.content("{\"question\":\"测试问题\"}"))
.andExpect(status().isOk())
.andExpect(jsonPath("$").isString());
}
}
监控与日志
Prometheus监控
management:
endpoints:
web:
exposure:
include: health,info,metrics,prometheus
metrics:
export:
prometheus:
enabled: true
结构化日志
@Slf4j
@Service
public class QAService {
public String answerQuestion(String question) {
log.info("Processing question: {}", question);
try {
// 处理逻辑
return result;
} catch (Exception e) {
log.error("Failed to answer question: {}", question, e);
throw e;
}
}
}
总结
本文详细介绍了基于Spring AI和RAG技术构建企业级智能文档问答系统的完整方案。通过合理的架构设计、性能优化和安全考虑,我们可以构建出高效、可靠的企业级AI应用。这种方案不仅适用于文档问答,还可以扩展到客服系统、知识管理等多个领域。
随着AI技术的不断发展,Spring AI生态将会提供更多强大的功能和更好的开发体验。建议开发者持续关注Spring AI的最新进展,以便更好地利用这些技术解决实际问题。
547

被折叠的 条评论
为什么被折叠?



