Spring AI与RAG技术实战:构建企业级智能文档问答系统
引言
在人工智能技术快速发展的今天,如何将AI能力有效集成到企业应用中成为了技术团队面临的重要挑战。Spring AI作为Spring生态系统中的AI集成框架,结合RAG(检索增强生成)技术,为企业构建智能文档问答系统提供了强大的技术支撑。本文将深入探讨如何使用Spring AI和RAG技术构建高效、准确的企业级智能问答系统。
技术架构概述
Spring AI框架核心组件
Spring AI提供了统一的API来集成各种AI模型和服务,主要包括以下核心组件:
- AI模型抽象层:提供统一的接口访问不同AI提供商的服务
- 提示工程支持:内置提示模板和变量替换机制
- 向量化集成:支持多种向量数据库和嵌入模型
- 工具调用框架:标准化AI代理的工具执行能力
RAG技术架构
RAG(Retrieval-Augmented Generation)技术通过以下流程实现智能问答:
// RAG处理流程伪代码
public String ragProcess(String question) {
// 1. 问题向量化
Embedding questionEmbedding = embeddingModel.embed(question);
// 2. 语义检索
List<Document> relevantDocs = vectorStore.similaritySearch(questionEmbedding);
// 3. 上下文构建
String context = buildContext(relevantDocs);
// 4. 增强生成
String prompt = buildPrompt(question, context);
return aiModel.generate(prompt);
}
环境搭建与配置
Maven依赖配置
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>0.8.1</version>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-pgvector-store-spring-boot-starter</artifactId>
<version>0.8.1</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>
应用配置
spring:
ai:
openai:
api-key: ${OPENAI_API_KEY}
chat:
options:
model: gpt-3.5-turbo
temperature: 0.7
vectorstore:
pgvector:
enabled: true
index-type: HNSW
dimensions: 1536
核心功能实现
文档处理与向量化
@Service
public class DocumentProcessingService {
@Autowired
private EmbeddingModel embeddingModel;
@Autowired
private VectorStore vectorStore;
public void processDocument(MultipartFile file) {
try {
// 文档解析
String content = parseDocument(file);
// 文本分块
List<TextChunk> chunks = chunkText(content);
// 向量化并存储
chunks.forEach(chunk -> {
Embedding embedding = embeddingModel.embed(chunk.getText());
Document document = new Document(chunk.getText(),
Map.of("source", file.getOriginalFilename()));
vectorStore.add(List.of(embedding), List.of(document));
});
} catch (Exception e) {
throw new RuntimeException("文档处理失败", e);
}
}
private List<TextChunk> chunkText(String text) {
// 实现文本分块逻辑
return TextSplitter.split(text, 1000, 200);
}
}
智能问答服务
@Service
public class QAService {
@Autowired
private ChatClient chatClient;
@Autowired
private VectorStore vectorStore;
@Autowired
private EmbeddingModel embeddingModel;
public String answerQuestion(String question) {
// 1. 检索相关文档
List<Document> relevantDocs = retrieveRelevantDocuments(question);
// 2. 构建提示
String prompt = buildRAGPrompt(question, relevantDocs);
// 3. 生成回答
return chatClient.call(prompt);
}
private List<Document> retrieveRelevantDocuments(String question) {
Embedding questionEmbedding = embeddingModel.embed(question);
return vectorStore.similaritySearch(questionEmbedding, 5);
}
private String buildRAGPrompt(String question, List<Document> documents) {
StringBuilder context = new StringBuilder();
documents.forEach(doc ->
context.append("文档内容: ").append(doc.getContent()).append("\n\n"));
return String.format("""
基于以下上下文信息,请回答用户的问题。
如果上下文信息不足以回答问题,请如实告知。
上下文信息:
%s
用户问题: %s
请提供准确、详细的回答:
""", context.toString(), question);
}
}
高级特性实现
多轮对话支持
@Service
public class ConversationService {
@Autowired
private ChatClient chatClient;
private final Map<String, List<ChatMessage>> conversationHistory = new ConcurrentHashMap<>();
public String continueConversation(String sessionId, String userMessage) {
List<ChatMessage> history = conversationHistory.getOrDefault(sessionId,
new ArrayList<>());
// 添加用户消息
history.add(new ChatMessage("user", userMessage));
// 构建对话上下文
String context = buildConversationContext(history);
// 生成回复
String assistantReply = chatClient.call(context);
// 保存助手回复
history.add(new ChatMessage("assistant", assistantReply));
conversationHistory.put(sessionId, history);
return assistantReply;
}
private String buildConversationContext(List<ChatMessage> history) {
StringBuilder context = new StringBuilder();
context.append("以下是当前的对话历史:\n\n");
history.forEach(message ->
context.append(message.getRole())
.append(": ")
.append(message.getContent())
.append("\n"));
context.append("\n请基于以上对话历史继续对话:");
return context.toString();
}
}
工具调用集成
@Configuration
public class ToolConfiguration {
@Bean
public FunctionToolWrapper databaseQueryTool() {
return FunctionToolWrapper.builder()
.name("queryDatabase")
.description("查询企业数据库获取相关信息")
.function(new QueryDatabaseFunction())
.build();
}
@Bean
public FunctionToolWrapper apiCallTool() {
return FunctionToolWrapper.builder()
.name("callInternalAPI")
.description("调用内部API获取数据")
.function(new InternalAPIFunction())
.build();
}
}
@Service
public class ToolEnhancedQAService {
@Autowired
private List<FunctionToolWrapper> tools;
@Autowired
private ChatClient chatClient;
public String enhancedAnswer(String question) {
// 构建工具调用提示
String toolPrompt = buildToolPrompt(question);
// 执行工具调用
String result = chatClient.call(toolPrompt);
// 解析工具调用结果并生成最终回答
return processToolResult(result);
}
}
性能优化与监控
缓存策略
@Configuration
@EnableCaching
public class CacheConfig {
@Bean
public CacheManager cacheManager() {
CaffeineCacheManager cacheManager = new CaffeineCacheManager();
cacheManager.setCaffeine(Caffeine.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.maximumSize(1000));
return cacheManager;
}
}
@Service
public class CachedQAService {
@Autowired
private QAService qaService;
@Cacheable(value = "qaCache", key = "#question")
public String getCachedAnswer(String question) {
return qaService.answerQuestion(question);
}
}
监控与指标
@Configuration
public class MetricsConfig {
@Bean
public MeterRegistry meterRegistry() {
return new SimpleMeterRegistry();
}
}
@Service
public class MonitoredQAService {
@Autowired
private MeterRegistry meterRegistry;
@Autowired
private QAService qaService;
private final Timer responseTimer;
public MonitoredQAService(MeterRegistry meterRegistry) {
this.responseTimer = Timer.builder("qa.response.time")
.description("问答响应时间")
.register(meterRegistry);
}
public String answerWithMetrics(String question) {
return responseTimer.record(() -> qaService.answerQuestion(question));
}
}
安全考虑
输入验证与过滤
@Service
public class SecurityService {
private static final Set<String> BLACKLISTED_TERMS = Set.of(
"敏感词1", "敏感词2", "恶意指令"
);
public void validateInput(String input) {
if (input == null || input.trim().isEmpty()) {
throw new IllegalArgumentException("输入不能为空");
}
if (input.length() > 1000) {
throw new IllegalArgumentException("输入过长");
}
// 检查黑名单词
for (String term : BLACKLISTED_TERMS) {
if (input.toLowerCase().contains(term.toLowerCase())) {
throw new SecurityException("输入包含不允许的内容");
}
}
}
}
访问控制
@RestController
@RequestMapping("/api/qa")
public class QAController {
@PostMapping
@PreAuthorize("hasRole('USER')")
public ResponseEntity<String> askQuestion(@RequestBody QuestionRequest request) {
// 实现问答逻辑
return ResponseEntity.ok(qaService.answerQuestion(request.getQuestion()));
}
@PostMapping("/admin/upload")
@PreAuthorize("hasRole('ADMIN')")
public ResponseEntity<String> uploadDocument(@RequestParam MultipartFile file) {
// 文档上传逻辑
return ResponseEntity.ok("文档上传成功");
}
}
部署与运维
Docker容器化
FROM openjdk:17-jdk-slim
WORKDIR /app
COPY target/spring-ai-rag-app.jar app.jar
EXPOSE 8080
ENV JAVA_OPTS="-Xmx512m -Xms256m"
ENTRYPOINT ["java", "-jar", "app.jar"]
Kubernetes部署
apiVersion: apps/v1
kind: Deployment
metadata:
name: spring-ai-rag-app
spec:
replicas: 3
selector:
matchLabels:
app: spring-ai-rag
template:
metadata:
labels:
app: spring-ai-rag
spec:
containers:
- name: app
image: spring-ai-rag:latest
ports:
- containerPort: 8080
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "1Gi"
cpu: "500m"
env:
- name: SPRING_PROFILES_ACTIVE
value: "prod"
---
apiVersion: v1
kind: Service
metadata:
name: spring-ai-rag-service
spec:
selector:
app: spring-ai-rag
ports:
- port: 80
targetPort: 8080
type: LoadBalancer
测试策略
单元测试
@SpringBootTest
public class QAServiceTest {
@MockBean
private ChatClient chatClient;
@MockBean
private VectorStore vectorStore;
@Autowired
private QAService qaService;
@Test
public void testAnswerQuestionWithRelevantContext() {
// 模拟向量存储返回相关文档
when(vectorStore.similaritySearch(any(), anyInt()))
.thenReturn(List.of(new Document("相关文档内容")));
// 模拟AI模型返回答案
when(chatClient.call(anyString()))
.thenReturn("这是基于上下文的答案");
String answer = qaService.answerQuestion("测试问题");
assertNotNull(answer);
assertEquals("这是基于上下文的答案", answer);
}
}
集成测试
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
@Testcontainers
public class IntegrationTest {
@Container
static PostgreSQLContainer<?> postgres = new PostgreSQLContainer<>("postgres:13");
@DynamicPropertySource
static void configureProperties(DynamicPropertyRegistry registry) {
registry.add("spring.datasource.url", postgres::getJdbcUrl);
registry.add("spring.datasource.username", postgres::getUsername);
registry.add("spring.datasource.password", postgres::getPassword);
}
@Test
public void testFullIntegration() {
// 完整的集成测试逻辑
}
}
总结与展望
本文详细介绍了如何使用Spring AI和RAG技术构建企业级智能文档问答系统。通过Spring AI的统一API接口,我们可以轻松集成各种AI模型和服务,而RAG技术则确保了问答的准确性和相关性。
关键优势
- 准确性提升:通过检索相关文档上下文,显著减少AI幻觉现象
- 可扩展性:支持多种向量数据库和AI模型提供商
- 企业级集成:与Spring生态系统无缝集成,支持安全、监控等企业级特性
- 成本效益:通过缓存和优化策略降低API调用成本
未来发展方向
- 多模态支持:扩展支持图像、音频等多模态文档处理
- 实时学习:实现系统的在线学习和持续改进
- 个性化适配:基于用户历史和行为提供个性化问答体验
- 边缘部署:支持在边缘设备上的轻量级部署
Spring AI与RAG技术的结合为企业智能应用开发提供了强大的技术基础,随着技术的不断发展,这类系统将在企业数字化转型中发挥越来越重要的作用。

被折叠的 条评论
为什么被折叠?



