Spring AI与RAG技术实战:构建企业级智能文档问答系统
引言
随着人工智能技术的快速发展,企业对于智能化文档处理的需求日益增长。传统的文档管理系统往往只能提供简单的关键词搜索,而无法理解用户的自然语言查询意图。Spring AI结合RAG(检索增强生成)技术,为企业构建智能文档问答系统提供了全新的解决方案。
技术架构概述
核心组件
我们的智能文档问答系统基于以下技术栈构建:
- Spring AI: 提供统一的AI应用开发接口
- RAG架构: 检索增强生成技术框架
- 向量数据库: Milvus用于存储文档向量
- Embedding模型: OpenAI或Ollama提供的文本向量化服务
- Spring Boot: 后端服务框架
- Spring Security: 系统安全认证
系统架构设计
@Configuration
@EnableAIAutomation
public class RAGSystemConfig {
@Bean
public VectorStore vectorStore() {
return new MilvusVectorStore("localhost", 19530);
}
@Bean
public EmbeddingModel embeddingModel() {
return new OpenAiEmbeddingModel("your-api-key");
}
@Bean
public DocumentLoader documentLoader() {
return new CompositeDocumentLoader(
new PdfDocumentLoader(),
new WordDocumentLoader(),
new TextDocumentLoader()
);
}
}
核心功能实现
1. 文档加载与处理
文档处理是整个系统的基础,我们需要支持多种格式的文档加载:
@Service
public class DocumentProcessingService {
@Autowired
private DocumentLoader documentLoader;
@Autowired
private EmbeddingModel embeddingModel;
@Autowired
private VectorStore vectorStore;
public void processDocument(File documentFile) {
// 加载文档
Document document = documentLoader.load(documentFile);
// 文本分块处理
List<TextChunk> chunks = textSplitter.split(document.getContent());
// 生成向量并存储
chunks.forEach(chunk -> {
float[] embedding = embeddingModel.embed(chunk.getText());
vectorStore.storeVector(chunk.getId(), embedding, chunk.getMetadata());
});
}
}
2. 语义检索实现
基于向量相似度的语义检索是RAG系统的核心:
@Service
public class SemanticSearchService {
@Autowired
private VectorStore vectorStore;
@Autowired
private EmbeddingModel embeddingModel;
public List<SearchResult> semanticSearch(String query, int topK) {
// 将查询文本向量化
float[] queryEmbedding = embeddingModel.embed(query);
// 在向量数据库中搜索相似文档
List<VectorSearchResult> results = vectorStore.search(
queryEmbedding,
topK,
SearchParams.defaultParams()
);
return results.stream()
.map(result -> new SearchResult(
result.getId(),
result.getScore(),
result.getMetadata()
))
.collect(Collectors.toList());
}
}
3. 智能问答生成
结合检索结果生成准确的回答:
@Service
public class QAGenerationService {
@Autowired
private ChatModel chatModel;
@Autowired
private SemanticSearchService searchService;
public String generateAnswer(String question) {
// 检索相关文档片段
List<SearchResult> relevantDocs = searchService.semanticSearch(question, 5);
// 构建提示词
String prompt = buildPrompt(question, relevantDocs);
// 调用AI模型生成回答
ChatResponse response = chatModel.generate(prompt);
return response.getContent();
}
private String buildPrompt(String question, List<SearchResult> context) {
StringBuilder promptBuilder = new StringBuilder();
promptBuilder.append("基于以下文档内容,请回答用户的问题:\n\n");
context.forEach(doc -> {
promptBuilder.append("文档片段:").append(doc.getContent()).append("\n\n");
});
promptBuilder.append("用户问题:").append(question).append("\n\n");
promptBuilder.append("请提供准确、简洁的回答,并注明答案的来源文档。");
return promptBuilder.toString();
}
}
高级特性实现
1. 多轮对话支持
通过会话内存实现多轮对话上下文维护:
@Service
public class ConversationService {
@Autowired
private ConversationMemory memory;
@Autowired
private QAGenerationService qaService;
public String handleConversation(String sessionId, String userMessage) {
// 获取会话历史
List<ConversationTurn> history = memory.getConversationHistory(sessionId);
// 构建包含上下文的查询
String contextualQuery = buildContextualQuery(userMessage, history);
// 生成回答
String answer = qaService.generateAnswer(contextualQuery);
// 保存到会话内存
memory.addTurn(sessionId, userMessage, answer);
return answer;
}
private String buildContextualQuery(String currentQuery, List<ConversationTurn> history) {
if (history.isEmpty()) {
return currentQuery;
}
StringBuilder contextBuilder = new StringBuilder();
contextBuilder.append("对话历史:\n");
history.forEach(turn -> {
contextBuilder.append("用户:").append(turn.getUserMessage()).append("\n");
contextBuilder.append("系统:").append(turn.getAssistantMessage()).append("\n");
});
contextBuilder.append("当前问题:").append(currentQuery);
return contextBuilder.toString();
}
}
2. 企业级安全控制
集成Spring Security实现访问控制:
@Configuration
@EnableWebSecurity
public class SecurityConfig {
@Bean
public SecurityFilterChain filterChain(HttpSecurity http) throws Exception {
http
.authorizeHttpRequests(authz -> authz
.requestMatchers("/api/public/**").permitAll()
.requestMatchers("/api/documents/upload").hasRole("ADMIN")
.requestMatchers("/api/qa/**").authenticated()
.anyRequest().authenticated()
)
.oauth2ResourceServer(OAuth2ResourceServerConfigurer::jwt)
.sessionManagement(session -> session
.sessionCreationPolicy(SessionCreationPolicy.STATELESS)
);
return http.build();
}
}
性能优化策略
1. 向量检索优化
@Configuration
public class PerformanceConfig {
@Bean
public CacheManager cacheManager() {
CaffeineCacheManager cacheManager = new CaffeineCacheManager();
cacheManager.setCaffeine(Caffeine.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.maximumSize(1000));
return cacheManager;
}
@Bean
public AsyncTaskExecutor taskExecutor() {
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
executor.setCorePoolSize(10);
executor.setMaxPoolSize(50);
executor.setQueueCapacity(100);
executor.setThreadNamePrefix("rag-executor-");
executor.initialize();
return executor;
}
}
2. 批量处理优化
@Service
public class BatchProcessingService {
@Async("taskExecutor")
public CompletableFuture<Void> processDocumentsInBatch(List<File> documents) {
return CompletableFuture.runAsync(() -> {
documents.parallelStream().forEach(document -> {
try {
processDocument(document);
} catch (Exception e) {
log.error("处理文档失败: {}", document.getName(), e);
}
});
});
}
}
监控与运维
1. 系统监控配置
management:
endpoints:
web:
exposure:
include: health,metrics,prometheus
metrics:
tags:
application: rag-system
tracing:
sampling:
probability: 1.0
micrometer:
observation:
registry:
step: 1m
2. 自定义监控指标
@Component
public class RAGMetrics {
private final Counter queryCounter;
private final Timer responseTimer;
private final Gauge accuracyGauge;
public RAGMetrics(MeterRegistry registry) {
this.queryCounter = Counter.builder("rag.queries.total")
.description("Total number of queries processed")
.register(registry);
this.responseTimer = Timer.builder("rag.response.time")
.description("Time taken to generate responses")
.register(registry);
}
public void recordQuery() {
queryCounter.increment();
}
public Timer.Sample startTiming() {
return Timer.start();
}
public void stopTiming(Timer.Sample sample) {
sample.stop(responseTimer);
}
}
实际应用场景
1. 企业知识库问答
系统可以对接企业的各类文档资源,包括产品手册、技术文档、政策文件等,为员工提供智能问答服务。
2. 客户服务自动化
集成到客服系统中,自动回答客户的常见问题,提高服务效率和质量。
3. 教育培训平台
用于在线教育平台,为学生提供个性化的学习辅导和问题解答。
部署与扩展
Docker容器化部署
FROM openjdk:17-jdk-slim
WORKDIR /app
COPY target/rag-system.jar app.jar
COPY config/application.yml config/
EXPOSE 8080
ENTRYPOINT ["java", "-jar", "app.jar", "--spring.config.location=config/application.yml"]
Kubernetes部署配置
apiVersion: apps/v1
kind: Deployment
metadata:
name: rag-system
spec:
replicas: 3
selector:
matchLabels:
app: rag-system
template:
metadata:
labels:
app: rag-system
spec:
containers:
- name: rag-app
image: rag-system:latest
ports:
- containerPort: 8080
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "1000m"
---
apiVersion: v1
kind: Service
metadata:
name: rag-service
spec:
selector:
app: rag-system
ports:
- port: 80
targetPort: 8080
总结与展望
本文详细介绍了基于Spring AI和RAG技术构建企业级智能文档问答系统的完整方案。通过结合先进的AI技术和成熟的Java生态系统,我们能够构建出既强大又易维护的智能应用系统。
未来的发展方向包括:
- 多模态支持:扩展支持图像、音频等非文本内容的处理
- 实时学习:实现系统的在线学习和持续改进
- 个性化推荐:基于用户行为提供个性化的内容推荐
- 跨语言支持:扩展多语言文档的处理能力
Spring AI和RAG技术的结合为企业智能化转型提供了强有力的技术支撑,相信在未来会有更多的创新应用场景出现。
1035

被折叠的 条评论
为什么被折叠?



