自编码简介(CAutoencoder)
稀疏自编码(CSparse Autoencoder)
我式自编码(CStacked Autoencoder)
去嗓自编码(CDenoising Autoencoder)
压缩自编码(Contrative Autoencoder)
Input: 数据的输入;
Encoder: 编码器;
Code: 输入的一个表示;
Decoder: 解码器;
Reconstruction: input的重建;
Error: 重建数据和input的误差。
自动编码器就是一种尽可能复现输入信号的神经网络;
自动编码器必须捕捉可以代表输入数据的最重要的因素;
类似PCA , 找到可以代表原信息的主要成分。
几种自编码的共同点
自编码的共同点: 是除了预防针对X简单地学习一个恒等函数外, 还
包含在以下两方面取折中。
1 、学习到一个针对X的表示h , x也能通过一个解码器从h 中还原; 需要
注意的是: 这并不需要对所有X都满足, 只满足对那些服从数据分布的X
即可。( 重建误差)
2 、减小模型代表性的能力, 使在尽可能多的输入方向上不敏感。( 模型
的表达能力, 泛化能力? ? )
如何在重建误差和表达能力之间取折中呢?
解决方法: 区分训练样本的哪些变量需要表示。学到一个数据的表示(映射,mapping) , 对流形的方向比较敏感,对正交于流形的方向
不敏感。将在正交于流形的方向产生一个收缩的表示。图中, 黑色的线为流形空间, 向右的绿色箭头与流形相切,蓝色的箭头正交于流形。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 15 13:50:06 2017
Auto-Encoder
@author: z
"""
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#xavier initialization
def xavier_init(fan_in, fan_out, constant = 1):
low = -constant * np.sqrt(6.0 / (fan_in + fan_out))
high = constant * np.sqrt(6.0 / (fan_in + fan_out))
return tf.random_uniform((fan_in, fan_out),
minval=low, maxval=high, dtype=tf.float32)
class AdditiveGaussianNoiseAutoencoder(object):
def __init__(self, n_input, n_hidden,
transfer_function=tf.nn.softplus,
optimizer = tf.train.AdamOptimizer(),
scale=0.1 ):
self.n_input = n_input
self.n_hidden = n_hidden
self.transfer = transfer_function
self.scale = tf.placeholder( tf.float32 )
self.training_scale = scale
network_weights = self._initialize_weights()
self.weights = network_weights
# Net Struct
self.x = tf.placeholder( tf.float32,
[None, self.n_input] )
self.hidden = self.transfer(
tf.add( tf.matmul(self.x +
scale * tf.random_normal(( n_input, ) ),
self.weights['w1'] ), self.weights['b1'] ))
self.reconstruction = tf.add( tf.matmul(
self.hidden, self.weights['w2'] ),
self.weights['b2'] )
#loss
self.cost = 0.5 * tf.reduce_sum( tf.pow(
tf.subtract( self.reconstruction,
self.x ), 2 ) )
self.optimizer = optimizer.minimize( self.cost )
init = tf.global_variables_initializer()
self.sess = tf.Session()
self.sess.run( init )
print ('begin to run session...')
def _initialize_weights(self):
all_weights = dict()
all_weights['w1'] = tf.Variable( xavier_init(
self.n_input, self.n_hidden ) )
all_weights['b1'] = tf.Variable( tf.zeros( [self.n_hidden],
dtype = tf.float32 ) )
all_weights['w2'] = tf.Variable( tf.zeros([self.n_hidden,
self.n_input], dtype = tf.float32) )
all_weights['b2'] = tf.Variable( tf.zeros( [self.n_input],
dtype = tf.float32 ) )
return all_weights
def partial_fit(self, X):
cost, opt = self.sess.run( (self.cost, self.optimizer),
feed_dict = { self.x : X, self.scale : self.training_scale } )
return cost
def calc_total_cost( self, X ):
return self.sess.run( self.cost,
feed_dict = { self.x : X, self.scale : self.training_scale } )
def transform( self, X ):
return self.sess.run( self.hidden,
feed_dict = { self.x : X, self.scale : self.training_scale } )
def generate( self, hidden = None ):
if hidden == None:
hidden = np.random.normal( size = self.weights['b1'] )
return self.sess.run( self.reconstruction,
feed_dict = { self.hidden : hidden } )
def reconstruction( self, X ):
return self.sess.run( self.reconstruction,
feed_dict = { self.x : X, self.scale : self.training_scale } )
def getWeights( self ):
return self.sess.run( self.weights['w1'] )
def getBiases( self ):
return self.sess.run( self.weights['b1'] )
mnist = input_data.read_data_sets( '../MNIST_data', one_hot = True )
def standard_scale( X_train, X_test ):
preprocessor = prep.StandardScaler().fit( X_train )
X_train = preprocessor.transform( X_train )
X_test = preprocessor.transform( X_test )
return X_train, X_test
def get_random_block_from_data( data, batch_size ):
start_index = np.random.randint( 0, len(data) - batch_size )
return data[ start_index : (start_index+batch_size) ]
X_train, X_test =standard_scale( mnist.train.images, mnist.test.images )
n_samples = int( mnist.train.num_examples )
training_epochs = 20
batch_size = 128
display_step = 1
autoencoder = AdditiveGaussianNoiseAutoencoder( n_input = 784,
n_hidden = 200,
transfer_function = tf.nn.softplus,
optimizer = tf.train.AdamOptimizer( learning_rate = 0.0001 ),
scale = 0.01 )
for epoch in range( training_epochs ):
avg_cost = 0
total_batch = int( n_samples / batch_size )
for i in range( total_batch ):
batch_xs = get_random_block_from_data( X_train, batch_size )
cost = autoencoder.partial_fit( batch_xs )
avg_cost = cost / n_samples * batch_size
if epoch % display_step == 0:
print( "epoch : %04d, cost = %.9f" % ( epoch+1, avg_cost ) )
print( "Total cost : ", str( autoencoder.calc_total_cost(X_test) ))