import pandas as pd
import numpy as mp
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(r"F:\kaiti\055n\data\samples_labeled5.csv")
# print(df.info())
# print(df.cluster.value_counts())
'''0太多,4太少'''
from sklearn.utils import resample
# print(df.isnull().sum())
# 是否要删除重复的?
label_map = {
0: "正常生命体征",
1: "传感器掉落",
2: "部分传感器故障",
3: "fault_two",
4: "fault_three",
5: "接触不良",
6: "middle",
}
def plot_condition(data):
for i in range(0, 6):
plt.figure(figsize=(4, 4))
plt.plot(data[data['cluster'] == i].reset_index(drop=True)['HR'], alpha=.7, label='HR')
plt.plot(data[data['cluster'] == i].reset_index(drop=True)['PULSE'], alpha=.7, label='PULSE')
plt.plot(data[data['cluster'] == i].reset_index(drop=True)['SBP'], alpha=.7, label='SBP')
plt.plot(data[data['cluster'] == i].reset_index(drop=True)['DBP'], alpha=.7, label='DBP')
plt.title(f'{label_map[i]}')
plt.legend()
plt.show()
if __name__ == '__main__':
plot_condition(df)
时间序列CSV文件按照标签进行绘图
最新推荐文章于 2022-04-11 11:17:17 发布