MBR Rootkit: new tricks added

Since the beginning of this year, a new kind of rootkit has been discovered in the wild. The MBR rootkit, the rootkit that affects Master Boot Record to hide itself inside Windows, has enticed the security industry and sparked many conversations on the future of malicious software because of its new approach never used before if not for some proof of concepts.

 

After three months, the gang behind this infection changed the malware code more and more times, trying to better hide their creature.

 

Firstly they introduced a driver to overwrite MBR instead of using simple Win32 subsystem APIs. By this way they tried to bypass some poor HIPS protections that would detect low level disk access behavior.

 

Now that some companies and developers released removal tools for this infections, they tried to change the way how they hide the MBR rootkit.

 

As explained in a past article we released, the MBR rootkit hooks Disk.sys's IRP_MJ_READ and IRP_MJ_WRITE dispatch routines so that it can obfuscate MBR's original code, showing instead a clean version of the Master Boot Record saved before the infection.

 

Now the game has become more dirty. First, they patch CLASSPNP.sys driver in memory, then they hook more Disk.sys's IRP_MJ_* dispatch routines and they add same hooks for cdrom.sys's IRP_MJ_* dispatch routines.

 

To better understand why they did it, let's go a bit more in detail.

 

Disk.sys's IRP_MJ_READ/WRITE dispatch routines point - in a uninfected machine - to a function called ClassReadWrite, which is a function provided by CLASSPNP.sys driver.

 

Now, if rootkit hooks Disk.sys's IRP_MJ_READ/WRITE to hide Master Boot Record's code, all that someone could do is getting original pointer to CLASSPNP!ClassReadWrite and, then, read MBR's code without any rootkit's change.

 

Here the problem arises: ClassReadWrite isn't exported from Classphnp.sys driver, and there are some ways to recover original ClassReadWrite pointer.

 

The first way would be to do a code analysis of a function called ClassInitialize. This function is exported by CLASSPNP driver and it contains the original pointer to ClassReadWrite function.

 

 

 

 

Here appears the first countermeasure used by the rootkit: it patches ClassInitialize function so that the original address of ClassReadWrite can't be recovered by there.

 

Another way would be to analyze cdrom.sys's driver. Cdrom.sys's IRP_MJ_READ/WRITE dispatch routines are pointing to the same ClassReadWrite function. This means that from cdrom.sys it would be possible to recover original address to ClassReadWrite function.

 

Second countermeasure used by the rootkit: it now hooks cdrom.sys too, instead of only disk.sys.

 

 

 

 

 

 

Then, the third change is the addition of dummy hooks by the rootkit. The first release of MBR rootkit hooked only IRP_MJ_READ/WRITE disaptch routines of Disk.sys. Now they added dummy hooks on:

 

 

maybe to scramble a bit ideas of av companies.

 

The truth is that, at the moment, security companies are a step behind this new infection and the gang who is developing this rootkit is playing his game and he's winning. Almost all known products developed to detect and remove this rootkit infection have been bypassed by latest releases of this malware. Moreover, looks like the gang is pretty active.

 

The good news is that Prevx CSI can still detect and clean the MBR rootkit infection. Since we added detection of this rootkit in January to our antirootkit engine, it hasn't required any update and it's still detecting the rootkit component of the infection.

  •  

     

  • IRP_MJ_CREATE
  • IRP_MJ_CLOSE
  • IRP_MJ_FLUSH_BUFFERS
  • IRP_MJ_DEVICE_CONTROL
  • IRP_MJ_INTERNAL_DEVICE_CONTROL
  • IRP_MJ_SHUTDOWN
  • IRP_MJ_POWER
  • IRP_MJ_SYSTEM_CONTROL
  • IRP_MJ_PNP
基于51单片机,实现对直流电机的调速、测速以及正反转控制。项目包含完整的仿真文件、源程序、原理图和PCB设计文件,适合习和实践51单片机在电机控制方面的应用。 功能特点 调速控制:通过按键调整PWM占空比,实现电机的速度调节。 测速功能:采用霍尔传感器非接触式测速,实时显示电机转速。 正反转控制:通过按键切换电机的正转和反转状态。 LCD显示:使用LCD1602液晶显示屏,显示当前的转速和PWM占空比。 硬件组成 主控制器:STC89C51/52单片机(与AT89S51/52、AT89C51/52通用)。 测速传感器:霍尔传感器,用于非接触式测速。 显示模块:LCD1602液晶显示屏,显示转速和占空比。 电机驱动:采用双H桥电路,控制电机的正反转和调速。 软件设计 编程语言:C语言。 开发环境:Keil uVision。 仿真工具:Proteus。 使用说明 液晶屏显示: 第一行显示电机转速(单位:转/分)。 第二行显示PWM占空比(0~100%)。 按键功能: 1键:加速键,短按占空比加1,长按连续加。 2键:减速键,短按占空比减1,长按连续减。 3键:反转切换键,按下后电机反转。 4键:正转切换键,按下后电机正转。 5键:开始暂停键,按一下开始,再按一下暂停。 注意事项 磁铁和霍尔元件的距离应保持在2mm左右,过近可能会在电机转动时碰到霍尔元件,过远则可能导致霍尔元件无法检测到磁铁。 资源文件 仿真文件:Proteus仿真文件,用于模拟电机控制系统的运行。 源程序:Keil uVision项目文件,包含完整的C语言源代码。 原理图:电路设计原理图,详细展示了各模块的连接方式。 PCB设计:PCB布局文件,可用于实际电路板的制作。
【四旋翼无人机】具备螺旋桨倾斜机构的全驱动四旋翼无人机:建模与控制研究(Matlab代码、Simulink仿真实现)内容概要:本文围绕具备螺旋桨倾斜机构的全驱动四旋翼无人机展开研究,重点进行了系统建模与控制策略的设计与仿真验证。通过引入螺旋桨倾斜机构,该无人机能够实现全向力矢量控制,从而具备更强的姿态调节能力和六自由度全驱动特性,克服传统四旋翼欠驱动限制。研究内容涵盖动力建模、控制系统设计(如PID、MPC等)、Matlab/Simulink环境下的仿真验证,并可能涉及轨迹跟踪、抗干扰能力及稳定性分析,旨在提升无人机在复杂环境下的机动性与控制精度。; 适合人群:具备一定控制理论基础和Matlab/Simulink仿真能力的研究生、科研人员及从事无人机系统开发的工程师,尤其适合研究先进无人机控制算法的技术人员。; 使用场景及目标:①深入理解全驱动四旋翼无人机的动力建模方法;②掌握基于Matlab/Simulink的无人机控制系统设计与仿真流程;③复现硕士论文级别的研究成果,为科研项目或术论文提供技术支持与参考。; 阅读建议:建议结合提供的Matlab代码与Simulink模型进行实践操作,重点关注建模推导过程与控制器参数调优,同时可扩展研究不同控制算法的性能对比,以深化对全驱动系统控制机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值