Description
I have a VERY SIMPLE problem for you. Given two integers A and B, your job is to calculate the Sum of A + B.
正整数高精度1000位加法
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line consists of two positive integers, A and B. Notice that the integers are very large, that means you should not process them by using 32-bit integer. You may assume the length of each integer will not exceed 1000.
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line is the an equation "A + B = Sum", Sum means the result of A + B. Note there are some spaces int the equation. Output a blank line between two test cases.
Sample Input
2 1 2 112233445566778899 998877665544332211
Sample Output
Case 1: 1 + 2 = 3 Case 2:112233445566778899 + 998877665544332211 = 1111111111111111110
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56#include<stdio.h> #include<string.h> #include<stdlib.h> int max(int a,int b) { int x; x=a>b?a:b; return x; } int main() { char a[1100],b[1100]; int z,i,n,la,lb,t=0,numa[1100],numb[1100]; scanf("%d",&n); while(n--) { memset(numa,0,sizeof(numa));数组清零 memset(numb,0,sizeof(numb)); scanf("%s%s",&a,&b); la=strlen(a); lb=strlen(b); for(i=0;i<la;i++) numa[la-1-i]=a[i]-'0'; for(i=0;i<lb;i++) numb[lb-1-i]=b[i]-'0';字符转化为数字 z=max(la,lb); for(i=0;i<z;i++) { numa[i]=numa[i]+numb[i]; if(numa[i]>9) { numa[i]=numa[i]-10; numa[i+1]++;进位 } } t++; printf("Case %d:\n",t); printf("%s + %s = ",a,b); if(numa[z]==0) { for(i=z-1;i>=0;i--) printf("%d",numa[i]); printf("\n"); } else { for(i=z;i>=0;i--) printf("%d",numa[i]); printf("\n"); } if(n!=0) printf("\n"); } return 0; }