Adaboost模型公式的参数推导

博客围绕Adaboost模型展开,先给出由基模型加权得到的模型fm(x),接着阐述基学习器和整个Adaboost模型的损失函数。通过一系列推导,求解损失函数中的αm和Gm(x),还得出αm的表达式以及ωim+1的推导结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  假设最后根据各个基模型Gi(x)i∈[1,m]G_i(x) {i\in[1,m]}Gi(x)i[1,m],各个基模型重要程度为αi\alpha_iαi加权得到的模型为fm(x)f_m(x)fm(x),其中y∈{−1,1}y\in{\{-1,1\}}y{1,1}

fm(x)=∑i=1mαiGi(x) f_m(x) = \sum_{i = 1}^{m}\alpha_{i} G_i(x) fm(x)=i=1mαiGi(x)
fm(x)=∑i=1m−1αiGi(x)+αmGm(x) f_m(x) = \sum_{i=1}^{m-1}\alpha_{i} G_i(x)+\alpha_m G_m(x)fm(x)=i=1m1αiGi(x)+αmGm(x)
fm(x)=fm−1(x)+αmGm(x) f_m(x) = f_{m-1}(x) +\alpha_m G_m(x)fm(x)=fm1(x)+αmGm(x)

  基学习器的损失函数为L(y,f(x))=e−yf(x)L(y,f(x)) = e^{-yf(x)}L(y,f(x))=eyf(x)

  所以整个Adaboost模型的损失函数为:
L=∑i=1nexp(−yif(xi))L = \sum_{i =1}^{n}{exp{(-y_if(x_i))}}L=i=1nexp(yif(xi))

  该损失函数的αm\alpha_mαmGm(x)G_m(x)Gm(x)是需要求得的

(αm,Gm(x))=argminαm,Gm∑i=1nexp(−yi(fm−1(xi)+αmGm(xi)))(\alpha_m,G_m(x))= \mathop{argmin}\limits_{\alpha_m,G_m} \sum_{i=1}^{n}exp{(-y_i(f_{m-_1} (x_i)+\alpha_m G_m(x_i)))}(αm,Gm(x))=αm,Gmargmini=1nexp(yi(fm1(xi)+αmGm(xi)))

其中∑i=1nexp(−yi(fm−1(xi)+αmGm(xi))=∑i=1nexp(−yifm−1(xi))exp(−yiαmGm(xi))\sum_{i=1}^{n}exp(-y_i(f_{m-1}(x_i)+\alpha_m G_m(x_i))=\sum_{i=1}^{n}exp(-y_if_{m-1}(x_i))exp(-y_i\alpha_m G_m(x_i))i=1nexp(yi(fm1(xi)+αmGm(xi))=i=1nexp(yifm1(xi))exp(yiαmGm(xi))–(1)

  设ωim=exp(−yifm−1(xi))\omega_i^{m} = exp(-y_if_{m-1}(x_i))ωim=exp(yifm1(xi)),将其带入式(1)得到:

∑i=1nωimexp(−yiαmGm(xi))\sum\limits_{i=1}^{n}\omega_ i^ {m} exp(-y_i\alpha_mG_m(x_i))i=1nωimexp(yiαmGm(xi))–(2)

  当yi=Gm(xi)y_i=G_m(x_i)yi=Gm(xi)时,yiGm(xi)=1y_iG_m(x_i) = 1yiGm(xi)=1,当yi≠Gm(xi)y_i\neq G_m(x_i)yi=Gm(xi)时,yiGm(xi)=−1y_iG_m(x_i) = -1yiGm(xi)=1,所以式(2)可以写成

  ∑yi=Gm(xi)nωimexp(−αm)+∑yi≠Gm(xi)nωimexp(αm)\sum\limits_{y_i=G_m(x_i)}^{n}\omega_{i}^{m}exp(-\alpha_m)+\sum\limits_{y_i \neq G_m(x_i)}^{n}\omega_{i}^{m} exp(\alpha_m)yi=Gm(xi)nωimexp(αm)+yi=Gm(xi)nωimexp(αm)

  =∑yi=Gm(xi)nωimexp(−αm)+∑yi≠Gm(xi)nωimexp(αm)+∑yi≠Gm(xi)nωimexp(−αm)−∑yi≠Gm(xi)nωimexp(−αm)=\sum\limits_{y_i=G_m(x_i)}^{n}\omega_{i}^{m}exp(-\alpha_m)+\sum\limits_{y_i \neq G_m(x_i)}^{n} \omega_{i}^{m}exp(\alpha_m) +\sum\limits_{y_i \neq G_m(x_i)}^{n} \omega_{i}^{m}exp(-\alpha_m) -\sum\limits_{y_i \neq G_m(x_i)}^{n} \omega_{i}^{m}exp(-\alpha_m)=yi=Gm(xi)nωimexp(αm)+yi=Gm(xi)nωimexp(αm)+yi=Gm(xi)nωimexp(αm)yi=Gm(xi)nωimexp(αm)

  =e−αm∑i=1nωim−(e−αm−eαm)∑yi≠Gm(xi)nωim=e^{-\alpha_m}\sum_{i=1}^{n}\omega_{i}^{m}-(e^{-\alpha_m}-e^{\alpha_m})\sum\limits_{y_i\neq G_m(x_i)}^{n}\omega_{i}^{m}=eαmi=1nωim(eαmeαm)yi=Gm(xi)nωim

  =e−αm∑i=1nωim−(e−αm−eαm)∑i=1nωimI(yi≠Gm(xi))=e^{-\alpha_m}\sum\limits_{i=1}^{n}{\omega_{i}^{m}}-(e^{-\alpha_m}-e^{\alpha_m})\sum\limits_{i=1}^{n} {\omega_{i}^{m}I(y_i \neq G_m(x_i))}=eαmi=1nωim(eαmeαm)i=1nωimI(yi=Gm(xi))–(3)

  要使式(3)最小,则Gm(x)G_m(x)Gm(x)应该取argminG∑i=1nωimI(yi≠Gm(xi))\mathop{argmin}\limits_{G}\sum\limits_{i=1}^{n}\omega_{i}^{m}I(y_i \neq G_m(x_i))Gargmini=1nωimI(yi=Gm(xi))

  因为每次求每个点的重要程度时都会除以总和,所以∑i=1nωim=1\sum\limits_{i=1}^{n}{\omega_{i}^{m}}=1i=1nωim=1,对式(3)中的αm\alpha_mαm求导得到:

  −e−αm−(−e−αm−eαm)∑i=1nωinI(yi≠Gm(xi))=0-e^{-\alpha_m}-(-e^{-\alpha_m}-e^{\alpha_m})\sum\limits_{i=1}^{n}\omega_{i}^{n}I(y_i \neq G_m(x_i)) = 0eαm(eαmeαm)i=1nωinI(yi=Gm(xi))=0

  e−αm(1−∑i=1nωinI(yi≠Gm(xi)))=eαm∑i=1nI(yi≠Gm(xi))e^{-\alpha_m}(1-\sum\limits_{i=1}^{n}{\omega_{i}^{n}I(y_i\neq G_m(x_i))})= e^{\alpha_m}\sum\limits_{i=1}^{n}I(y_i \neq G_m(x_i))eαm(1i=1nωinI(yi=Gm(xi)))=eαmi=1nI(yi=Gm(xi))–(4)

  令∑i=1nωi=1nI(yi≠Gm(xi))=em\sum\limits_{i=1}^{n}\omega_{i=1}^{n}I(y_i \neq G_m(x_i))= e_mi=1nωi=1nI(yi=Gm(xi))=em

  化简式(4)得到αm=12ln(1−emem)\alpha_m = \frac{1}{2}ln(\frac{1-e_m}{e_m})αm=21ln(em1em)

  因为ωim=exp(−yifm−1(xi))\omega_i^{m} = exp(-y_if_{m-1}(x_i))ωim=exp(yifm1(xi))可以推导得

ωim+1=exp(−yifm(xi))=exp(−yi(fm−1(xi)+αmGm(xi)))=exp(−yifm−1)exp(−yiαmGm(xi))\omega_i^{m+1} = exp(-y_if_{m}(x_i))=exp(-y_i(f_{m-1}(x_i)+\alpha_m G_m(x_i)))=exp(-y_if_{m-1})exp(-y_i \alpha_m G_m(x_i))ωim+1=exp(yifm(xi))=exp(yi(fm1(xi)+αmGm(xi)))=exp(yifm1)exp(yiαmGm(xi))

=ωimexp(−yiαmGm(xi))=\omega_{i}^{m}exp(-y_i\alpha_m G_m(x_i))=ωimexp(yiαmGm(xi))

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值