Prime Palindromes

部署运行你感兴趣的模型镜像

Problem:

Prime Palindromes

The number 151 is a prime palindrome because it is both a prime number and a palindrome (it is the same number when read forward as backward). Write a program that finds all prime palindromes in the range of two supplied numbers a and b (5 <= a < b <= 100,000,000); both a and b are considered to be within the range .

PROGRAM NAME: pprime

INPUT FORMAT

Line 1: Two integers, a and b

SAMPLE INPUT (file pprime.in)

5 500

OUTPUT FORMAT

The list of palindromic primes in numerical order, one per line.

SAMPLE OUTPUT (file pprime.out)

5
7
11
101
131
151
181
191
313
353
373
383

HINTS (use them carefully!)

 

Hint 1

Generate the palindromes and see if they are prime.

 

Hint 2

Generate palindromes by combining digits properly. You might need more than one of the loops like below.

/* generate five digit palindrome: */
for (d1 = 1; d1 <= 9; d1+=2) {	/* only odd; evens aren't so prime */
    for (d2 = 0; d2 <= 9; d2++) {
        for (d3 = 0; d3 <= 9; d3++) {
	    palindrome = 10000*d1 + 1000*d2 +100*d3 + 10*d2 + d1;
	    ... deal with palindrome ...
	}
    }
}

My Answer:

 

 


My Gain:

一个重要的定理:

质数prime:位数为偶数位panlindrome的质数有且只有11。

由此可以少做很多次不必要的isPrime检查。

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

### USACO P1217 Prime Palindromes 的 Java 实现 以下是基于枚举方法并结合回文数构造的方式实现的一个高效解决方案。此方案利用了回文数的特性以及质数判断算法,从而避免了大量的冗余计算。 #### 方法概述 为了提高效率,可以先生成给定范围内所有的回文数,再逐一验证这些回文数是否为质数。这种方法显著减少了需要测试的数量,因为大多数非回文数可以直接排除[^4]。 #### AC代码 (Java) ```java import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int a = scanner.nextInt(); int b = scanner.nextInt(); List<Integer> result = findPalindromePrimes(a, b); for (int num : result) { System.out.println(num); } } private static boolean isPrime(int n) { if (n < 2) return false; if (n == 2 || n == 3) return true; // 特殊情况处理 if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i += 6) { // 跳过偶数和能被3整除的数 if (n % i == 0 || n % (i + 2) == 0) return false; } return true; } private static List<Integer> generatePalindromes(int length) { List<Integer> palindromes = new ArrayList<>(); if (length == 1) { for (int i = 0; i <= 9; i++) { palindromes.add(i); } return palindromes; } int halfLength = (length + 1) / 2; int start = (int) Math.pow(10, halfLength - 1); int end = (int) Math.pow(10, halfLength); for (int prefix = start; prefix < end; prefix++) { String s = Integer.toString(prefix); StringBuilder sb = new StringBuilder(s); if (length % 2 == 0) { sb.append(new StringBuilder(s).reverse()); } else { sb.append(new StringBuilder(s.substring(0, s.length() - 1)).reverse()); } palindromes.add(Integer.parseInt(sb.toString())); } return palindromes; } private static List<Integer> findPalindromePrimes(int a, int b) { List<Integer> primes = new ArrayList<>(); for (int len = 1; len <= 8 && Math.pow(10, len - 1) <= b; len++) { List<Integer> candidates = generatePalindromes(len); // 构造长度为len的所有回文数 for (int candidate : candidates) { if (candidate >= a && candidate <= b && isPrime(candidate)) { primes.add(candidate); } } } return primes; } } ``` --- #### 关键点解释 1. **回文数生成逻辑**: 使用 `generatePalindromes` 函数动态生成指定长度的回文数。对于奇数长度的回文数,中间字符不重复;而对于偶数长度,则完全对称。 2. **质数检测优化**: 利用了跳过偶数和能被3整除的数的方法,并进一步缩小循环范围至平方根级别 \( \sqrt{n} \)。 3. **边界条件处理**: 需要特别注意上下界 `[a, b]` 和最大可能值 \(10^8\) 的约束条件[^2]。 --- #### 时间复杂度分析 由于只针对回文数进行质数检验,而且回文数数量远少于总自然数数量,因此该算法的时间复杂度相较于暴力解法大幅降低。具体时间复杂度取决于区间大小和回文数分布密度。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值