import argparse
from http import client
import time
from pathlib import Path
import cv2
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from models.experimental import attempt_load
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized
import base64, json
from flask import jsonify
import paho.mqtt.client as mqtt
import copy
# cv2转base64
def cv2_to_base64(img):
img = cv2.imencode('.jpg', img)[1]
image_code = str(base64.b64encode(img))[2:-1]
return image_code
client = mqtt.Client()
client.connect("*.***", 1883, 60)
topic = "qly_drone/data"
def detect():
source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
save_img = not opt.nosave and not source.endswith('.txt') # save inference images
save_img = False
print("save_img:", save_img)
print("save_txt:", save_txt)
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
# Directories
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Initialize
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
stride = int(model.stride.max()) # model stride
imgsz = check_img_size(imgsz, s=stride) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
print("webcam:", webcam)
if webcam:
# view_img = check_imshow()
view_img = False
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
print("Using video stream!!!")
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
# Run inference
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
t0 = time.time()
frame_count = 0
last_s = None
for path, img, im0s, vid_cap in dataset:
# print("dataset's is --->", len(dataset))
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
pred = model(img, augment=opt.augment)[0]
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
send_ok = False
frame_count += 1
if frame_count % 10 == 0:
continue
if frame_count % 100000 == 0:
frame_count = 0
# print("pred len ---->", len(pred))
if webcam: # batch_size >= 1
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # img.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
json_res = {}
json_res["serial_number"] = frame_count
json_res["drone_id"] = "CAR001"
json_res["timestamp"] = str(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()))
json_res["data_type"] = "ai"
# json_res['data']
obj_data = {}
obj_data["frame_id"] = frame_count
obj_data["obj_number"] = len(det)
obj_list = []
# obj_data["obj_list"] = ["22rr"]
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
s += f"{len(det)} objects detected, "
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# print(s, "--", last_s)
if last_s is None or last_s != s:
send_ok = True
last_s = copy.deepcopy(s)
# Write results
obj_id = 0
for *xyxy, conf, cls in reversed(det):
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4))).view(-1).tolist() # normalized xywh
# print(xywh)
if int(xywh[2]) == 0 or int(xywh[3]) == 0:
continue
obj_info = {}
obj_info["class_id"] = int(cls)
obj_info["obj_id"] = obj_id
obj_info["obj_left"] = int(xywh[0])
obj_info["obj_top"] = int(xywh[1])
obj_info["obj_width"] = int(xywh[2])
obj_info["obj_height"] = int(xywh[3])
obj_info["obj_conf"] = float(conf)
obj_img = im0[int(xywh[1]):int(xywh[1] + xywh[3]), int(xywh[0]):int(xywh[0] + xywh[2])]
obj_img_base64 = cv2_to_base64(obj_img)
obj_info["image_data"] = obj_img_base64
obj_list.append(obj_info)
# print(obj_info)
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img: # Add bbox to image
label = f'{names[int(cls)]} {conf:.2f}'
# if int(cls) == 3: # 只标注3的类别
# plot_one_box(xyxy, im0, label="no-mask", color=[0, 0, 255], line_thickness=3)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
obj_id += 1
obj_data["obj_list"] = obj_list
json_res["data"] = obj_data
json_dict = json.dumps(json_res, indent=2, sort_keys=True, ensure_ascii=False) # 行缩进和键值排序
# json_dict = jsonify(json_res)
# json_dict = json.dumps(json_res)
# print(json_dict)
if send_ok:
print("send ok")
client.publish(topic, json_dict)
# Print time (inference + NMS)
print(f'{s}Done. ({t2 - t1:.3f}s)')
# Stream results
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else: # 'video' or 'stream'
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f"Results saved to {save_dir}{s}")
client.disconnect()
print(f'Done. ({time.time() - t0:.3f}s)')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default='./weights/ktxx5/weights/best.pt', help='model.pt path(s)')
# parser.add_argument('--source', type=str, default='/home/ubuntu/codes/data/tower_test/nc.JPG', help='source')
parser.add_argument('--source', type=str, default='rtmp://*.*.*.*:1935/live/CAR002', help='source') # file/folder, 0 for webcam ./data/poppy/421/images_split
parser.add_argument('--save-det-img', type=bool, default=False, help='do not save images/videos(no detect label)') # True表示只保存检测了目标的图像
parser.add_argument('--name', default='uav_ai', help='save results to project/name')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') # 640
parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
print(opt)
# check_requirements(exclude=('pycocotools', 'thop'))
with torch.no_grad():
detect()
YOLO拉流推理,并将结果采用MQTT进行消息发送
于 2024-09-27 08:38:10 首次发布