POJ 3233 Matrix Power Series 矩阵快速幂+二分

本文介绍了一种结合矩阵快速幂和二分法解决特定数学问题的方法,具体实现包括矩阵的基本运算如加法、乘法及求模,并通过一个示例程序详细展示了如何运用这些方法来高效求解矩阵的幂次。

对数字的处理:

快速幂模+二分求和 求(∑A^b)%C


对矩阵的处理同理;

只是自己定义一些函数来表示 + * ^ %

/*
 * POJ 3233
 * fuqiang
 * 矩阵快速幂+二分
 * 2013/7/31
*/
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
using namespace std;
#define maxn 30+3
int n, k, m;
struct Matrix
{
    int val[maxn][maxn];
    void unit()  //单位矩阵
    {
        for(int i = 0; i < maxn; i++) val[i][i] = 1;
    }
    void zero()  //零矩阵
    {
        memset(val, 0, sizeof(val));
    }
} x;
Matrix operator %(const Matrix &a, const int &m)  //矩阵求模
{
    Matrix temp;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            temp.val[i][j] = a.val[i][j] % m;
    return temp;
}

Matrix operator *(const Matrix &a, const Matrix &b)  //矩阵乘法
{
    Matrix tmp;
    tmp.zero();
    for(int k = 1; k <= n; k++)
    {
        for(int i = 1; i <= n; i++)
            if(a.val[i][k])
                for(int j = 1; j <= n; j++)
                {
                    tmp.val[i][j] += a.val[i][k] * b.val[k][j];
                }
    }
    return tmp%m;
}

Matrix operator ^(Matrix x, int n)  //矩阵快速幂
{
    Matrix tmp;
    tmp.zero();
    tmp.unit();
    while(n)
    {
        if(n & 1) tmp = tmp * x;
        x = x * x;
        n >>= 1;
    }
    return tmp;
}

Matrix operator +(const Matrix &a, const Matrix &b)  //矩阵加法
{
    Matrix tmp;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= n; j++)
            tmp.val[i][j] = (a.val[i][j] + b.val[i][j]) % m;
    return tmp;
}

Matrix sum(Matrix x, int k,int m)
{
    if(k == 1) return x;
    else
    {
        Matrix tmp = sum(x, k>>1, m)%m;
        if(k & 1)
        {
            Matrix tmp2 = x ^ ((k >> 1) + 1);
            return (tmp + tmp2 + tmp * tmp2)%m;
        }
        else
        {
            Matrix tmp2 = x ^ (k >> 1);
            return (tmp + tmp * tmp2)%m;
        }
    }
}

int main()
{
//#ifndef ONLINE_JUDGE
//    freopen("in","r",stdin);
//#endif
    while(~scanf("%d%d%d", &n, &k, &m))
    {
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                scanf("%d", &x.val[i][j]);
                x.val[i][j] %= m;
            }
        }
        Matrix ans = sum(x, k, m);
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= n; j++)
                printf("%d ", ans.val[i][j]);
            printf("\n");
        }
        break;
    }
    return 0;
}


思想来源:

 Matrix67 大神, 他的博客: http://www.matrix67.com/blog/

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值