【LeetCode 1218】 Longest Arithmetic Subsequence of Given Difference

本文介绍了一种使用动态规划求解最长等差子序列的方法,通过实例展示了如何找到数组中等差序列的最大长度,适用于算法设计与分析的学习者。

题目描述

Given an integer array arr and an integer difference, return the length of the longest subsequence in arr which is an arithmetic sequence such that the difference between adjacent elements in the subsequence equals difference.

Example 1:

Input: arr = [1,2,3,4], difference = 1
Output: 4
Explanation: The longest arithmetic subsequence is [1,2,3,4].

Example 2:

Input: arr = [1,3,5,7], difference = 1
Output: 1
Explanation: The longest arithmetic subsequence is any single element.

Example 3:

Input: arr = [1,5,7,8,5,3,4,2,1], difference = -2
Output: 4
Explanation: The longest arithmetic subsequence is [7,5,3,1].

Constraints:

1 <= arr.length <= 10^5
-10^4 <= arr[i], difference <= 10^4

思路

动态规划。mp[i] 表示以数字num[i] 结尾的等差数列长度。新的数字num,如果num-diff出现过,说明可以接在num-diff后面构成新的数列, mp[num] = max(mp[num], mp[num-diff]+1)。否则为1。

代码

class Solution {
public:
    int longestSubsequence(vector<int>& arr, int difference) {
        int n = arr.size();
        unordered_map<int, int> mp;
        int res = 1;
        for (auto num : arr) {
            if (mp.count(num-difference)) 
                mp[num] = max(mp[num], mp[num-difference]+1);
            else mp[num] = 1;
            res = max(mp[num], res);
        }
        return res;
    }
};

今天也是产出超低的一天。。。脑阔痛。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值