The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ...
nm where m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2
3 5 7 15 6 4 10296 936 1287 792 1
Sample Output
105 10296
<span style="color:#cc0000;">#include <iostream>
using namespace std;
int mmm(int a,int b)
{
if(a<b) return mmm(b,a);
if(b==0) return a;
return mmm(b,a%b);
}
int main()
{
int L,M,N,O,p;
cin>>L;
while(L--)
{
cin>>M>>N;
M--;
while(M--)
{
cin>>O;
p=mmm(N,O);
N=O*N/p;
}
cout<<N<<endl;
}
return 0;
}</span>
先输入组数,然后每组的个数,可以先输入每组第一个元素,以此用后面和前面一个最小公倍数作比较,这样比较简单的求出来整个的最小公倍数。
本来是个简答题,但是过于纠结于另一种解法 ,导致浪费很多时间,开始用后面一个数和1作比较,然后在用后面的来代替1,不知怎么结果老是出错。。。