题目描述:
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
给你一串括号,问你括号匹配的数目,输入end时结束。
样例:
input:
((())) ()()() ([]]) )[)( ([][][) end
output:
6 6 4 0 6模板式的区间DP,选取区间长度,选取起点然后确定终点,暴力循环更新,状态转移方程:dp[i][j]=dp[i-1][j+1]+2,DP数组储存区间[i,j]内匹配括号的数目
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<stack>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int M=105;
const int INF=1e9+1;
char s[M];
int dp[M][M];
bool check(char a,char b)
{
if (a=='('&&b==')') return true;
if (a=='['&&b==']') return true;
return false;
}
int main()
{
while(gets(s)!=NULL)
{
if(!strcmp(s, "end")) break;
int len=strlen(s);
for (int i=0;i<len;i++)
{
if (check(s[i],s[i+1]))
dp[i][i+1]=2;
else
dp[i][i+1]=0;
}
for (int l=2;l<len;l++)
{
for (int i=0;i+l<len;i++)
{
int r=i+l;
dp[i][r]=0;
if (check(s[i],s[r]))
dp[i][r]=dp[i+1][r-1]+2;
for (int k=i;k<r;k++)
dp[i][r]=max(dp[i][r],dp[i][k]+dp[k+1][r]);
}
}
printf("%d\n",dp[0][len-1]);
}
return 0;
}