大模型从入门到应用——LangChain:代理(Agents)-[工具(Tools):自定义工具(Custom Tools)]

本文围绕LangChain展开,介绍了其基础知识、安装配置等内容。重点阐述了工具的使用,包括定义工具的两种主要方式,如字符串输入输出工具的数据类、继承类及装饰器用法,还涉及自定义结构化工具、修改现有工具、定义工具优先级、使用直接返回工具和处理工具错误等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分类目录:《大模型从入门到应用》总目录

LangChain系列文章:


当构建我们自己的代理程序时,我们需要为其提供一个工具列表,供其使用。除了被调用的实际函数外,工具还包括几个组件:

  • name[str]:在提供给代理程序的工具集中必须是唯一的
  • description[str. 可选]:可选的,但建议提供,因为代理程序使用它来确定工具的使用方式
  • return_direct[bool]:默认为False
  • args_schema[可选]:可选的,但建议提供,可用于提供更多信息(例如少量示例)或验证预期参数

有两种主要方式来定义工具,我们将在下面的示例中涵盖这两种方式。

导入通用需要的模块

from langchain import LLMMathChain, SerpAPIWrapper
from langchain.agents import AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import BaseTool, StructuredTool, Tool, tool
llm = ChatOpenAI(temperature=0)

字符串输入和输出工具

最简单的工具接受一个查询字符串,并返回一个字符串输出。如果我们的工具函数需要多个参数,我们可能希望跳转到下面的StructuredTool部分。有两种方法可以实现这一点:

  • 使用Tool数据类
  • 继承BasTool
Tool数据类

Tool数据类封装了接受单个字符串输入并返回字符串输出的函数。

# Load the tool configs that are needed.
search = SerpAPIWrapper()
llm_math_chain = LLMMathChain(llm=llm, verbose=True)
tools = [
    Tool.from_function(
        func=search.run,
        name = "Search",
        description="useful for when you need to answer questions about current events"
        # coroutine= ... <- you can specify an async method if desired as well
    ),
]

我们还可以定义自定义的args_schema以提供有关输入的更多信息:

from pydantic import BaseModel, Field

class CalculatorInput(BaseModel):
    question: str = Field()
        

tools.append(
    Tool.from_function(
        func=llm_math_chain.run,
        name="Calculator",
        description="useful for when you need to answer questions about math",
        args_schema=CalculatorInput
        # coroutine= ... <- you can specify an async method if desired as well
    )
)
# Construct the agent. We will use the default agent type here.
# See documentation for a full list of options.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")

日志输出:

Entering new AgentExecutor chain...
I need to find out Leo DiCaprio's girlfriend's name and her age
Action: Search
Action Input: "Leo DiCaprio girlfriend"
Observation: After rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his "age bracket" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.
Thought:I still need to find out his current girlfriend's name and age
Action: Search
Action Input: "Leo DiCaprio current girlfriend"
Observation: Just Jared on Instagram: “Leonardo DiCaprio & girlfriend Camila Morrone couple up for a lunch date!
Thought:Now that I know his girlfriend's name is Camila Morrone, I need to find her current age
Action: Search
Action Input: "Camila Morrone age"
Observation: 25 years
Thought:Now that I have her age, I need to calculate her age raised to the 0.43 power
Action: Calculator
Action Input: 25^(0.43)

Entering new LLMMathChain chain...
25^(0.43)```text
25**(0.43)```

...numexpr.evaluate("25**(0.43)")...

Answer: 3.991298452658078
Finished chain.

Observation: Answer: 3.991298452658078
Thought:I now know the final answer
Final Answer: Camila Morrone's current age raised to the 0.43 power is approximately 3.99.

Finished chain.

输出:

"Camila Morrone's current age raised to the 0.43 power is approximately 3.99."
继承BaseTool

我们还可以直接继承BaseTool类。这在我们希望对实例变量有更多控制或者希望将回调传递给嵌套链或其他工具时非常有用。

from typing import Optional, Type

from langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun

class CustomSearchTool(BaseTool):
    name = "custom_search"
    description = "useful for when you need to answer questions about current events"

    def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
        """Use the tool."""
        return search.run(query)
    
    async def _arun(self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
        """Use the tool asynchronously."""
        raise NotImplementedError("custom_search does not support async")
    
class CustomCalculatorTool(BaseTool):
    name = "Calculator"
    description = "useful for when you need to answer questions about math"
    args_schema: Type[BaseModel] = CalculatorInput

    def _run(self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
        """Use the tool."""
        return llm_math_chain.run(query)
    
    async def _arun(self, query: str,  run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
        """Use the tool asynchronously."""
        raise NotImplementedError("Calculator does not support async")
tools = [CustomSearchTool(), CustomCalculatorTool()]
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")

日志输出:

Entering new AgentExecutor chain...
I need to use custom_search to find out who Leo DiCaprio's girlfriend is, and then use the Calculator to raise her age to the 0.43 power.
Action: custom_search
Action Input: "Leo DiCaprio girlfriend"
Observation: After rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his "age bracket" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.
Thought:I need to find out the current age of Eden Polani.
Action: custom_search
Action Input: "Eden Polani age"
Observation: 19 years old
Thought:Now I can use the Calculator to raise her age to the 0.43 power.
Action: Calculator
Action Input: 19 ^ 0.43

Entering new LLMMathChain chain...
19 ^ 0.43```text
19 ** 0.43```

...numexpr.evaluate("19 ** 0.43")...

Answer: 3.547023357958959
Finished chain.

Observation: Answer: 3.547023357958959
Thought:I now know the final answer.
Final Answer: 3.547023357958959

Finished chain.

输出:

'3.547023357958959'

使用tool装饰器

为了更容易定义自定义工具,提供了@tool装饰器。该装饰器可用于快速从简单函数创建一个Tool。默认情况下,装饰器使用函数名作为工具名,但可以通过将字符串作为第一个参数传递来覆盖此行为。此外,装饰器将使用函数的文档字符串作为工具的描述。

from langchain.tools import tool

@tool
def search_api(query: str) -> str:
    """Searches the API for the query."""
    return f"Results for query {query}"

search_api

我们还可以提供工具名和是否直接返回等参数。

@tool("search", return_direct=True)
def search_api(query: str) -> str:
    """Searches the API for the query."""
    return "Results"
search_api
Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class 'pydantic.main.SearchApi'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bd66310>, coroutine=None)

我们还可以提供args_schema来提供有关参数的更多信息。

class SearchInput(BaseModel):
    query: str = Field(description="should be a search query")
        
@tool("search", return_direct=True, args_schema=SearchInput)
def search_api(query: str) -> str:
    """Searches the API for the query."""
    return "Results"
search_api
Tool(name='search', description='search(query: str) -> str - Searches the API for the query.', args_schema=<class '__main__.SearchInput'>, return_direct=True, verbose=False, callback_manager=<langchain.callbacks.shared.SharedCallbackManager object at 0x12748c4c0>, func=<function search_api at 0x16bcf0ee0>, coroutine=None)

自定义结构化工具

如果我们的函数需要更结构化的参数,我们可以直接使用StructuredTool类,或者仍然继承BaseTool类。

StructuredTool dataclass

要从给定的函数动态生成结构化工具,最快速的方法是使用StructuredTool.from_function()

import requests
from langchain.tools import StructuredTool

def post_message(url: str, body: dict, parameters: Optional[dict] = None) -> str:
    """Sends a POST request to the given url with the given body and parameters."""
    result = requests.post(url, json=body, params=parameters)
    return f"Status: {result.status_code} - {result.text}"

tool = StructuredTool.from_function(post_message)
继承BaseTool

BaseTool类会自动从_run方法的签名中推断出模式schema

from typing import Optional, Type

from langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRun
            
class CustomSearchTool(BaseTool):
    name = "custom_search"
    description = "useful for when you need to answer questions about current events"

    def _run(self, query: str, engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
        """Use the tool."""
        search_wrapper = SerpAPIWrapper(params={"engine": engine, "gl": gl, "hl": hl})
        return search_wrapper.run(query)
    
    async def _arun(self, query: str,  engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
        """Use the tool asynchronously."""
        raise NotImplementedError("custom_search does not support async")



# You can provide a custom args schema to add descriptions or custom validation

class SearchSchema(BaseModel):
    query: str = Field(description="should be a search query")
    engine: str = Field(description="should be a search engine")
    gl: str = Field(description="should be a country code")
    hl: str = Field(description="should be a language code")

class CustomSearchTool(BaseTool):
    name = "custom_search"
    description = "useful for when you need to answer questions about current events"
    args_schema: Type[SearchSchema] = SearchSchema

    def _run(self, query: str, engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[CallbackManagerForToolRun] = None) -> str:
        """Use the tool."""
        search_wrapper = SerpAPIWrapper(params={"engine": engine, "gl": gl, "hl": hl})
        return search_wrapper.run(query)
    
    async def _arun(self, query: str,  engine: str = "google", gl: str = "us", hl: str = "en", run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str:
        """Use the tool asynchronously."""
        raise NotImplementedError("custom_search does not support async")
    

使用装饰器

tool装饰器会自动创建一个结构化工具,如果函数的签名具有多个参数。

import requests
from langchain.tools import tool

@tool
def post_message(url: str, body: dict, parameters: Optional[dict] = None) -> str:
    """Sends a POST request to the given url with the given body and parameters."""
    result = requests.post(url, json=body, params=parameters)
    return f"Status: {result.status_code} - {result.text}"

修改现有工具

现在,我们展示如何加载现有工具并直接修改它们。在下面的示例中,我们做一些非常简单的操作,将Search工具的名称更改为 Google Search。

from langchain.agents import load_tools
tools = load_tools(["serpapi", "llm-math"], llm=llm)
tools[0].name = "Google Search"
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("Who is Leo DiCaprio's girlfriend? What is her current age raised to the 0.43 power?")

日志输出:

Entering new AgentExecutor chain...
I need to find out Leo DiCaprio's girlfriend's name and her age.
Action: Google Search
Action Input: "Leo DiCaprio girlfriend"
Observation: After rumours of a romance with Gigi Hadid, the Oscar winner has seemingly moved on. First being linked to the television personality in September 2022, it appears as if his "age bracket" has moved up. This follows his rumoured relationship with mere 19-year-old Eden Polani.
Thought:I still need to find out his current girlfriend's name and her age.
Action: Google Search
Action Input: "Leo DiCaprio current girlfriend age"
Observation: Leonardo DiCaprio has been linked with 19-year-old model Eden Polani, continuing the rumour that he doesn't date any women over the age of ...
Thought:I need to find out the age of Eden Polani.
Action: Calculator
Action Input: 19^(0.43)
Observation: Answer: 3.547023357958959
Thought:I now know the final answer.
Final Answer: The age of Leo DiCaprio's girlfriend raised to the 0.43 power is approximately 3.55.

Finished chain.

输出:

"The age of Leo DiCaprio's girlfriend raised to the 0.43 power is approximately 3.55."

定义工具之间的优先级

当我们创建自定义工具时,我们可能希望Agent更多地使用自定义工具而不是普通工具。例如,我们创建了一个自定义工具,用于从数据库中获取有关音乐的信息。当用户需要有关歌曲的信息时,我们希望Agent更多地使用自定义工具而不是普通的搜索工具。但是Agent可能会优先考虑普通的搜索工具。为了实现这一目标,可以在描述中添加类似于如果问题是关于音乐的,例如“昨天的歌手是谁?”或“2022年最受欢迎的歌曲是什么?”的句子,优先使用这个工具而不是普通搜索工具的语句,下面是一个示例:

# Import things that are needed generically
from langchain.agents import initialize_agent, Tool
from langchain.agents import AgentType
from langchain.llms import OpenAI
from langchain import LLMMathChain, SerpAPIWrapper
search = SerpAPIWrapper()
tools = [
    Tool(
        name = "Search",
        func=search.run,
        description="useful for when you need to answer questions about current events"
    ),
    Tool(
        name="Music Search",
        func=lambda x: "'All I Want For Christmas Is You' by Mariah Carey.", #Mock Function
        description="A Music search engine. Use this more than the normal search if the question is about Music, like 'who is the singer of yesterday?' or 'what is the most popular song in 2022?'",
    )
]

agent = initialize_agent(tools, OpenAI(temperature=0), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("what is the most famous song of christmas")

日志输出:

Entering new AgentExecutor chain...
 I should use a music search engine to find the answer
Action: Music Search
Action Input: most famous song of christmas'All I Want For Christmas Is You' by Mariah Carey. I now know the final answer
Final Answer: 'All I Want For Christmas Is You' by Mariah Carey.

Finished chain.

输出:

"'All I Want For Christmas Is You' by Mariah Carey."

使用直接返回的工具

通常情况下,如果一个工具被调用,将其输出直接返回给用户可能是很有意义的。我们可以通过将工具的return_direct标志设置为True来轻松实现这一点。

llm_math_chain = LLMMathChain(llm=llm)
tools = [
    Tool(
        name="Calculator",
        func=llm_math_chain.run,
        description="useful for when you need to answer questions about math",
        return_direct=True
    )
]
llm = OpenAI(temperature=0)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("whats 2**.12")

日志输出:

Entering new AgentExecutor chain...
 I need to calculate this
Action: Calculator
Action Input: 2**.12Answer: 1.086734862526058

Finished chain.

输出:

'Answer: 1.086734862526058'

处理工具错误

当工具遇到错误且异常未被捕获时,Agent将停止执行。如果我们希望Agent继续执行,可以引发ToolException并相应地设置handle_tool_error。当抛出ToolException时,Agent将不会停止工作,而是根据工具的handle_tool_error变量处理异常,并将处理结果作为观察返回给Agent,并以红色打印出来。我们可以将handle_tool_error设置为True,设置为统一的字符串值,或者设置为函数。如果设置为函数,该函数应该以ToolException作为参数,并返回一个str。需要注意的是,仅仅引发ToolException是不会生效的。我们需要先设置工具的handle_tool_error,因为它的默认值是False

from langchain.schema import ToolException

from langchain import SerpAPIWrapper
from langchain.agents import AgentType, initialize_agent
from langchain.chat_models import ChatOpenAI
from langchain.tools import Tool

from langchain.chat_models import ChatOpenAI

def _handle_error(error:ToolException) -> str:
    return  "The following errors occurred during tool execution:" + error.args[0]+ "Please try another tool."
def search_tool1(s: str):raise ToolException("The search tool1 is not available.")
def search_tool2(s: str):raise ToolException("The search tool2 is not available.")
search_tool3 = SerpAPIWrapper()
description="useful for when you need to answer questions about current events.You should give priority to using it."
tools = [
    Tool.from_function(
        func=search_tool1,
        name="Search_tool1",
        description=description,
        handle_tool_error=True,
    ),
    Tool.from_function(
        func=search_tool2,
        name="Search_tool2",
        description=description,
        handle_tool_error=_handle_error,
    ),
    Tool.from_function(
        func=search_tool3.run,
        name="Search_tool3",
        description="useful for when you need to answer questions about current events",
    ),
]

agent = initialize_agent(
    tools,
    ChatOpenAI(temperature=0),
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True,
)

agent.run("Who is Leo DiCaprio's girlfriend?")

日志输出:

Entering new AgentExecutor chain...
I should use Search_tool1 to find recent news articles about Leo DiCaprio's personal life.
Action: Search_tool1
Action Input: "Leo DiCaprio girlfriend"
Observation: The search tool1 is not available.
Thought:I should try using Search_tool2 instead.
Action: Search_tool2
Action Input: "Leo DiCaprio girlfriend"
Observation: The following errors occurred during tool execution:The search tool2 is not available.Please try another tool.
Thought:I should try using Search_tool3 as a last resort.
Action: Search_tool3
Action Input: "Leo DiCaprio girlfriend"
Observation: Leonardo DiCaprio and Gigi Hadid were recently spotted at a pre-Oscars party, sparking interest once again in their rumored romance. The Revenant actor and the model first made headlines when they were spotted together at a New York Fashion Week afterparty in September 2022.
Thought:Based on the information from Search_tool3, it seems that Gigi Hadid is currently rumored to be Leo DiCaprio's girlfriend.
Final Answer: Gigi Hadid is currently rumored to be Leo DiCaprio's girlfriend.

Finished chain.

输出:

"Gigi Hadid is currently rumored to be Leo DiCaprio's girlfriend."

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

### 如何在 LangChain 中创建或使用自定义 Tools #### 创建简单工具 LangChain 提供了一个灵活的方式来定义和使用工具。可以通过继承 `BaseTool` 类来创建自定义工具[^1]。以下是实现的一个基本示例: ```python from langchain.agents import Tool from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.chat_models import ChatOpenAI from langchain.utilities import SerpAPIWrapper class MyCustomSearchTool(Tool): name = "My Custom Search" description = "A tool that uses a search engine to find information on the web." def _run(self, query: str) -> str: """Use the SerpAPI to run a search.""" search = SerpAPIWrapper() return search.run(query) async def _arun(self, query: str) -> str: """Use the SerpAPI asynchronously to run a search.""" search = SerpAPIWrapper() return await search.arun(query) ``` 在此代码片段中,我们定义了一个名为 `MyCustomSearchTool` 的类,它实现了 `_run` 和 `_arun` 方法用于同步和异步操作[^3]。 #### 加载预定义工具并修改其属性 除了创建自定义工具外,还可以加载现有的工具并通过调整它们的属性来自定义行为。例如,可以更改工具名称或其他参数: ```python from langchain.llms import OpenAI from langchain.agents.agent_toolkits import create_csv_agent llm = OpenAI(temperature=0) tools = load_tools(["serpapi", "llm-math"], llm=llm) tools[0].name = "Google Search" # 修改第一个工具的名字为 Google Search ``` 这段代码展示了如何加载一组预先构建好的工具,并通过索引访问这些工具对象以更新特定字段。 #### 设置工具优先级 当多个工具可能匹配某个输入时,设置优先级可以帮助决定哪个工具应该被优先考虑执行任务。虽然具体方法取决于所使用的代理类型及其配置方式,但在某些情况下可以直接指定顺序或者权重值给各个工具实例作为参考依据之一来进行处理逻辑上的优化设计。 #### 使用视频资源进一步学习 对于更深入的理解以及实际应用中的技巧演示,《Create Custom Tools for Chatbots in LangChain》提供了详细的讲解与示范[^2]。观看此视频能够帮助开发者更好地掌握定制化聊天机器人所需的各种技能点。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

von Neumann

您的赞赏是我创作最大的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值