TopCoder 练习1 加密转换

本文深入探讨了如何通过添加相邻数字之和来加密二进制字符串,并提供了两种解码策略。对于给定的加密字符串,我们将尝试解码为两个可能的原始字符串:一种假设首字符为'0',另一种假设为'1'。这种方法最多可以产生两种不同的解码结果,且每种情况仅需一次验证即可确定是否有效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Statement

 

Let's say you have a binary string such as the following:

011100011

One way to encrypt this string is to add to each digit the sum of its adjacent digits. For example, the above string would become:

123210122

In particular, if P is the original string, and Q is the encrypted string, then Q[i] = P[i-1] + P[i] + P[i+1] for all digit positions i. Characters off the left and right edges of the string are treated as zeroes.

An encrypted string given to you in this format can be decoded as follows (using 123210122 as an example):

  1. Assume P[0] = 0.
  2. Because Q[0] = P[0] + P[1] = 0 + P[1] = 1, we know that P[1] = 1.
  3. Because Q[1] = P[0] + P[1] + P[2] = 0 + 1 + P[2] = 2, we know that P[2] = 1.
  4. Because Q[2] = P[1] + P[2] + P[3] = 1 + 1 + P[3] = 3, we know that P[3] = 1.
  5. Repeating these steps gives us P[4] = 0, P[5] = 0, P[6] = 0, P[7] = 1, and P[8] = 1.
  6. We check our work by noting that Q[8] = P[7] + P[8] = 1 + 1 = 2. Since this equation works out, we are finished, and we have recovered one possible original string.

Now we repeat the process, assuming the opposite about P[0]:

  1. Assume P[0] = 1.
  2. Because Q[0] = P[0] + P[1] = 1 + P[1] = 0, we know that P[1] = 0.
  3. Because Q[1] = P[0] + P[1] + P[2] = 1 + 0 + P[2] = 2, we know that P[2] = 1.
  4. Now note that Q[2] = P[1] + P[2] + P[3] = 0 + 1 + P[3] = 3, which leads us to the conclusion that P[3] = 2. However, this violates the fact that each character in the original string must be '0' or '1'. Therefore, there exists no such original string P where the first digit is '1'.

Note that this algorithm produces at most two decodings for any given encrypted string. There can never be more than one possible way to decode a string once the first binary digit is set.

Given a string message, containing the encrypted string, return a vector <string> with exactly two elements. The first element should contain the decrypted string assuming the first character is '0'; the second element should assume the first character is '1'. If one of the tests fails, return the string "NONE" in its place. For the above example, you should return {"011100011", "NONE"}.

Definition

 
Class:BinaryCode
Method:decode
Parameters:string
Returns:vector <string>
Method signature:vector <string> decode(string message)
(be sure your method is public)
 
 

Constraints

-message will contain between 1 and 50 characters, inclusive.
-Each character in message will be either '0', '1', '2', or '3'.

Examples

0) 
 
"123210122"
Returns: { "011100011",  "NONE" }

The example from above.

1) 
 
"11"
Returns: { "01",  "10" }

We know that one of the digits must be '1', and the other must be '0'. We return both cases.

2) 
 
"22111"
Returns: { "NONE",  "11001" }

Since the first digit of the encrypted string is '2', the first two digits of the original string must be '1'. Our test fails when we try to assume that P[0] = 0.

3) 
 
"123210120"
Returns: { "NONE",  "NONE" }

This is the same as the first example, but the rightmost digit has been changed to something inconsistent with the rest of the original string. No solutions are possible.

4) 
 
"3"
Returns: { "NONE",  "NONE" }
 
5) 
 
"12221112222221112221111111112221111"
Returns: 
{ "01101001101101001101001001001101001",
  "10110010110110010110010010010110010" }
 

This problem statement is the exclusive and proprietary property of TopCoder, Inc. Any unauthorized use or reproduction of this information without the prior written consent of TopCoder, Inc. is strictly prohibited. (c)2003, TopCoder, Inc. All rights reserved.     


#include <string>
#include <vector>
#include <sstream>
using namespace std;
class BinaryCode
{
private:
	string decode(int P_pre, int P_pre_1, int index, string Q)
	{
		string original_code = "";
		if (index <= 0 || index > Q.length())
		{
			return "";
		}
		int P_i = 0, Q_pre = 0; 
		Q_pre = atoi((Q.substr(index-1, 1)).c_str());
		if (index == 1)
		{
			P_i = Q_pre - P_pre;

		}
		else if (index == Q.length())
		{
			if (index == Q.length() && Q_pre != P_pre + P_pre_1)
			{
				return "NONE";
			}
			else
			{
				return "";
			}
		}
		else
		{
			P_i = Q_pre - P_pre - P_pre_1; 
		}
		stringstream ss;
		ss << P_i;
		string strPi = ss.str();

		if (P_i >= 2)
		{
			return "NONE";	
		}
		else
		{
			string part_decode = decode(P_i, P_pre, index+1, Q);
			if (part_decode == "NONE")
			{
				return "NONE";
			}
			else 
			{
				original_code = strPi + part_decode;
				if (index == 1)
				{
					ss.str("");
					ss << P_pre;
					string strPpre = ss.str();
					original_code = strPpre + original_code;
				}
				return original_code;
			}	
		}
	};
public:
	vector <string> decode(string message)
	{
		vector <string> original_code;
		if (message.length() == 1)
		{
			if (atoi(message.c_str()) > 1 || atoi(message.c_str()) < 0)
			{
				original_code.push_back("NONE");
				original_code.push_back("NONE");
			}
			else
			{
				original_code.push_back(message);
				original_code.push_back("NONE");
			}
			return original_code;
		}
		string strCode;
		strCode = decode(0, 0, 1, message);
		original_code.push_back(strCode);
		strCode = decode(1, 0, 1, message);
		original_code.push_back(strCode);
		return 	original_code;	
	};
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值