#!/usr/bin/env python
# -*- coding: utf-8 -*-
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def my_conv(input_image, out_dim, name,channel):
with tf.variable_scope(name):
# -*- coding: utf-8 -*-
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
import numpy as np
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, w):
return tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def my_conv(input_image, out_dim, name,channel):
with tf.variable_scope(name):

这篇博客介绍了如何在内存有限的电脑上训练和测试卷积神经网络。使用TensorFlow构建了CNN模型,通过调整批处理大小和使用dropout技术优化训练。在训练过程中,将数据集拆分成多个小批量进行训练,并展示了每100次迭代的训练精度。最后,对测试集进行多次评估,计算平均准确率。
最低0.47元/天 解锁文章
950

被折叠的 条评论
为什么被折叠?



