总结一下用caffe跑图片数据的研究流程

本文介绍了使用Caffe进行女性衣物图片分类的研究过程,包括数据爬取、预处理、模型训练及测试等步骤,并分享了可视化响应图和权重图的具体操作。

最近在用caffe玩一些数据集,这些数据集是从淘宝爬下来的图片。主要是想研究一下对女性衣服的分类。

下面是一些具体的操作流程,这里总结一下。

1 爬取数据。写爬虫从淘宝爬取自己需要的数据。

2 数据预处理。将图片从jpg,png格式转为leveldb格式。因为caffe的输入层datalayer是从leveldb读取的。这一步自己基于caffe写了个工具实现转换。

转换命令例子:

./convert_imagedata.bin /home/linger/imdata/skirt_train/ /home/linger/linger/testfile/skirt_train_db/ /home/linger/linger/testfile/skirt_train_attachment/ 3 250 250
./convert_imagedata.bin /home/linger/imdata/skirt_test/ /home/linger/linger/testfile/skirt_test_db/ /home/linger/linger/testfile/skirt_test_attachment/ 3 250 250

./compute_image_mean.bin /home/linger/linger/testfile/skirt_train_db /home/linger/linger/testfile/skirt_train_mean.binaryproto
./compute_image_mean.bin /home/linger/linger/testfile/skirt_test_db /home/linger/linger/testfile/skirt_test_mean.binaryproto

3 建立网络模型。主要是写train.prototxt和test.prototxt,还有solver.prototxt。前两者是训练和测试的网络结构,后者是网络的一些配置参数。

4 训练和测试模型。有时候需要调整一些参数,比如learning rate,或者调整网络结构。

5 可视化响应图和权重图。主要把最后一层的特征响应图和权重图画出来,便于观察规律。这两个工具也是自己写的。

工具使用例子:

./visualize_weights.bin /home/linger/linger/caffe-action/caffe-master/examples/cifar10/cifar10_full_test.prototxt /home/linger/linger/caffe-action/caffe-master/examples/cifar10/cifar10_full_iter_60000 1 GPU /home/linger/linger/testfile/skirt_test_attachment/image_filename /home/linger/linger/testfile/weights/ 7


./visualize_features.bin /home/linger/linger/caffe-action/caffe-master/examples/cifar10/cifar10_full_test.prototxt /home/linger/linger/caffe-action/caffe-master/examples/cifar10/cifar10_full_iter_60000 20 GPU /home/linger/linger/testfile/skirt_test_attachment/image_filename /home/linger/linger/testfile/innerproduct/ 7
内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值