找出数组中出现次数超过数组长度一半的元素

本文介绍了一种高效方法来查找数组中出现次数超过一半的数字,包括使用快速排序的Partition方法和另一种通过标号遍历数组的方法。这种方法能够在O(n)时间内完成,优于先排序再查找的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数组中出现次数超过一半的数字

来自剑指offer,其中两种方法思想都很好,感谢作者。

#include <iostream>
using namespace std;

/*
两种思想:第一种想到统计上的中位数定义如果存在满足条件的数,则肯定该数为数组的中位数,找到中位数
没必要对整个数组进行排序,只需要利用快速排序中的Partition方法找到某个元素应该在middle位置,
然后检查是否满足次数超过数组大小的一半。
*/

int Partition(int *A,int low,int high)
{
	int pivotkey=A[low];
	while (low<high)
	{
		while (low<high&&A[high]>=pivotkey)
		{
			high--;
		}
		A[low]=A[high];
		while (low<high&&A[low]<=pivotkey)
		{
			low++;
		}
		A[high]=A[low];
	}
	A[low]=pivotkey;
	return low;
}

bool confirmNum(int *array,int number,int len)
{
	int time=0,i;
	for (i=0;i<len;i++)
	{
		if (array[i]==number)
		{
			time++;
		}
	}
	if (time*2>len)
	{
		return true;
	}
	else
		return false;
}

void MoreThanHalfArray(int *array,int len)
{
	int middle=len/2;
	int index,start=0,end=len-1;
	index=Partition(array,start,end);
	while (index!=middle)
	{
		if (index>middle)
		{
			end=index-1;
			index=Partition(array,start,end);
		}
		else
		{
			start=index+1;
			index=Partition(array,start,end);
		}
	}
	int result=array[middle];
	if (confirmNum(array,result,len))
	{
		cout<<"exsit this element is "<<result<<endl;
	}
	else
		cout<<"not found this element\n";
}

/*
另外一种就是进行标号的遍历数组,因为某个元素超过一半,保存数组中的数字和其出现次数
如果下一个相同则次数加1,不同减1,如果次数变为0则保存数字为下一个数,最终情况是出现次数最多的元素
最终保存下来,然后检查是否超过半数
*/

void MoreThanHalf(int *array,int len)
{
	int i;
	int result,time=0;
	for (i=0;i<len;i++)
	{
		if (time==0)
		{
			result=array[i];
			time=1;
		}
		else if (array[i]==result)
		{
			time++;
		}
		else
			time--;
	}
	if (confirmNum(array,result,len))
	{
		cout<<"exsit this element is "<<result<<endl;
	}
	else
		cout<<"not found this element\n";
}

int main()
{
	int array[]={1,2,3,2,2,2,5,4,2};
	MoreThanHalfArray(array,9);
	MoreThanHalf(array,9);
	return 0;
}

这两种实现都能在O(n)时间内完成,要优于先排序然后找数组元素的方法。

<think>好的,我现在需要帮助用户找到力扣上关于“数组中出现次数超过一半的数字”的相关题目。首先,根据用户提供的引用内容,特别是引用[1]到[5],可以看出用户主要关注的是剑指 Offer 39题,也就是多数元素问题。用户可能希望了解这道题的具体内容、解题思路以及相关方法。 首先,我需要确认用户提到的题目在力扣上的具体编号和名称。根据引用[1]、[2]、[3]、[4]和[5],都指向了同一道题:剑指 Offer 39. 数组中出现次数超过一半的数字。因此,我应该首先明确这道题的基本要求和示例。 接下来,用户可能需要了解不同的解题方法,比如哈希表统计法、排序法、摩尔投票法等。根据引用[3]和[4]提到的摩尔投票法,这种方法的时间复杂度是O(n),空间复杂度是O(1),是一个高效的解法。需要详细解释摩尔投票法的原理,比如票数正负抵消的机制,以及如何通过遍历数组找到众数。 然后,用户可能需要了解其他相关题目,比如力扣中的第169题“多数元素”,这与剑指Offer 39题类似,但可能有不同的输入条件或变种问题。此外,用户可能对类似的问题感兴趣,比如“求众数II”(第229题),需要找出出现次数超过n/3次的元素,这可以扩展用户的理解。 在整理回答时,需要确保符合用户给出的系统级指令,例如所有数学表达式用$...$格式,独立公式用$$...$$,并且正确使用中文。同时,生成相关问题时要考虑用户可能的后续疑问,比如不同解法的比较、时间空间复杂度分析、实际应用场景等。 需要验证引用的正确性,确保引用的内容与对应的题目一致。例如,引用[3]提到的推论二关于票数和的抵消机制,这确实是摩尔投票法的核心思想,需要正确引用。同时,代码示例需要符合用户提供的Python语法,并确保正确性。 最后,生成的相关问题需要覆盖用户可能感兴趣的方向,如其他相关题目、优化方法、实际应用等,确保问题具有引导性,帮助用户深入理解该算法题的不同方面。</think>### 数组中出现次数超过一半的数字(剑指 Offer 39) #### 题目描述 数组中有一个数字出现的次数超过数组长度一半,请找出这个数字。假设数组非空且总存在多数元素。 示例: 输入:`[1,2,3,2,2,2,5,4,2]` 输出:`2`(出现5次,数组长度9) --- #### 核心思路 1. **摩尔投票法** 通过**票数正负抵消**的思想,假设众数(出现次数超半数的数)的票数为$+1$,非众数的票数为$-1$。由于众数数量占优,最终剩余的数字必为众数[^3][^4]。 **步骤**: - 初始化候选值`x`和票数`votes` - 遍历数组:若票数为0,更新候选值为当前元素;否则根据当前元素是否等于候选值增减票数 - 最终候选值即为众数 ```python def majorityElement(nums): votes, x = 0, None for num in nums: if votes == 0: x = num votes += 1 if num == x else -1 return x ``` 2. **其他解法** - **哈希统计法**:统计频率,时间复杂度$O(n)$,空间复杂度$O(n)$ - **排序法**:排序后取中间值,时间复杂度$O(n \log n)$,空间复杂度$O(1)$ --- #### 相关题目 1. **力扣169. 多数元素** 与本题完全相同,可用相同解法[^2][^5]。 2. **力扣229. 求众数II** 扩展问题:找出所有出现次数超过$\lfloor n/3 \rfloor$次的元素,需结合摩尔投票法改进[^1]。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值