Prime Ring Problem Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 39066 Accepted Submission(s): 17239 Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
Sample Output
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Source
题意: n个数(1-n)构成一个素数环,是的相邻两个数的和均为素数,第一个数固定为1.
思路:简单深搜.下面三份代码,一二份搜索的参数都只有一个,而最后一份有两个,
搜索的参数由自己定,但考虑入门的人(像当初的我),为他们提供参考.
AC代码:
#include<iostream>
#include <cstring>
using namespace std;
int n;
int a[25];
bool vis[25];
bool prime(int x)
{
for(int i=2;i*i<=x;i++)
if(x%i==0) return false;
return true;
}
void DFS(int x)
{
if(x==n&&prime(a[x-1]+a[0]))
//搜索(递归)结束条件:找到了最后一个,并且最后一个与第一个(a[0],也就是1)的和也为素数
{
for(int i=0;i<n;i++)
{
if(i) cout<<" ";
cout<<a[i];
}
cout<<endl;
return ;
}
for(int i=1;i<=n;i++)//1到n的数依次去搜索
{
if(!vis[i]&&prime(a[x-1]+i))//i没用过且与上一个数的和为素数
{
vis[i]=true;//标记 i 用过
a[x]=i;//第x个数为i
DFS(x+1);//递归,搜索第x+1个
vis[i]=false;//取消标记.使得下次搜索能进行,当前搜索(n个数组合的一种情况)结束时(无论成功与否)
}
}
}
int main()
{
int kase=0;
while(cin>>n)
{
cout<<"Case "<<++kase<<":"<<endl;
a[0]=1;//第0个数为 1
memset(vis,false,sizeof(vis));//vis[i]=false-->i未用过
vis[1]=true;//标记 1 用过
DFS(1);//搜索第1个数
cout<<endl;
}
return 0;
}
上面那份代码的数组元素下标从0开始,下面这份代码的从1开始,
#include <stdio.h>
#include <string.h>
int n;
int a[25];
int visit[25];
int sushu(int x);
int DFS(int x);
int main()
{
int cas=0;
a[1]=1;
while (scanf("%d",&n)!=EOF)
{
printf("Case %d:\n",++cas);
memset(visit,0,sizeof(visit));
visit[1]=1;
DFS(2);
printf("\n");
}
return 0;
}
int sushu(int x)
{
int i;
for (i=2;i*i<x+1;i++)
{
if (x%i==0)
return 0;
}
return 1;
}
int DFS(int x)
{
int i;
if (x==n+1&&sushu(a[n]+a[1])==1)
{
for (i=1;i<n;i++)
{
printf("%d ",a[i]);
}
printf("%d\n",a[n]);
return ;
}
for (i=2;i<=n;i++)
{
if (visit[i]==0)
{
if (sushu(a[x-1]+i)==1)
{
visit[i]=1;
a[x]=i;
DFS(x+1);
visit[i]=0;
}
}
}
}
两个参数:
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
int n;
bool vis[25];//标记各个数是否用过
int num[25];//填的数字
bool fun(int s)
{
for(int i=2; i*i<=s; i++)
{
if(s%i==0)
return false;
}
return true;
}
void Dfs(int s,int t)//s第t-1个数的值 t要搜索第t个数
{
if(t==n+1)//跳出的条件
{
if(fun(s+1)==true)
{
for(int i=1; i<n; i++)
{
printf("%d ",num[i]);
}
printf("%d\n",num[n]);
}
return ;
}
for(int i=1; i<=n; i++)//1到n中的数去寻找
{
if(vis[i]==false)//判断是否重复出现//即 没有用过
{
if(fun(s+i)==true)
{
num[t]=i;
vis[i]=true;
Dfs(i,t+1);
vis[i]=false;////进入到最深层后,返回时用到
}
}
}
}
int main()
{
int Case=0;
while(~scanf("%d",&n))
{
printf("Case %d:\n",++Case);
memset(vis,0,sizeof(vis));
vis[1]=true;//确定这个数字使用过
num[1]=1;//输出的数字
Dfs(1,2);
printf("\n");
}
return 0;
}
|