Tensorflow:Can't parse serialized Example.

本文介绍了一个在读取TFRecord格式文件时遇到的bug及其解决方案。问题在于使用tf.FixedLenFeature时未指定维度,导致解析错误。正确的做法是明确指定特征的维度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个bug发生在 读取TFRecord格式的文件中。

解决方案是tf.FixedLenFeature后面加上具体维度如:

features = tf.parse_single_example(serialized_example,
                                       features={
                                           'label': tf.FixedLenFeature([381], tf.int64)
                                       })
#下面程序运行时报错: C:\Users\Administrator\AppData\Local\Programs\Python\Python312\python.exe C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\transformers\utils\generic.py Traceback (most recent call last): File "C:\Users\Administrator\AppData\Local\Programs\Python\Python312\Lib\site-packages\transformers\utils\generic.py", line 34, in <module> from ..utils import logging ImportError: attempted relative import with no known parent package 进程已结束,退出代码为 1 ------------------------------------------------------------------------------------------------ import inspect import json import os import tempfile import warnings from collections import OrderedDict, UserDict, defaultdict from collections.abc import Iterable, MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import dataclass, fields, is_dataclass from enum import Enum from functools import partial, wraps from typing import Any, Callable, ContextManager, Optional, TypedDict import numpy as np from packaging import version from ..utils import logging from .import_utils import ( get_torch_version, is_flax_available, is_mlx_available, is_tf_available, is_torch_available, is_torch_fx_proxy, requires, ) _CAN_RECORD_REGISTRY = {} logger = logging.get_logger(__name__) if is_torch_available(): # required for @can_return_tuple decorator to work with torchdynamo import torch # noqa: F401 from ..model_debugging_utils import model_addition_debugger_context class cached_property(property): """ Descriptor that mimics @property but caches output in member variable. From tensorflow_datasets Built-in in functools from Python 3.8. """ def __get__(self, obj, objtype=None): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute") attr = "__cached_" + self.fget.__name__ cached = getattr(obj, attr, None) if cached is None: cached = self.fget(obj) setattr(obj, attr, cached) return cached # vendored from distutils.util def strtobool(val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'val' is anything else. """ val = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f"invalid truth value {val!r}") def infer_framework_from_repr(x): """ Tries to guess the framework of an object `x` from its repr (brittle but will help in `is_tensor` to try the frameworks in a smart order, without the need to import the frameworks). """ representation = str(type(x)) if representation.startswith("<class 'torch."): return "pt" elif representation.startswith("<class 'tensorflow."): return "tf" elif representation.startswith("<class 'jax"): return "jax" elif representation.startswith("<class 'numpy."): return "np" elif representation.startswith("<class 'mlx."): return "mlx" def _get_frameworks_and_test_func(x): """ Returns an (ordered since we are in Python 3.7+) dictionary framework to test function, which places the framework we can guess from the repr first, then Numpy, then the others. """ framework_to_test = { "pt": is_torch_tensor, "tf": is_tf_tensor, "jax": is_jax_tensor, "np": is_numpy_array, "mlx": is_mlx_array, } preferred_framework = infer_framework_from_repr(x) # We will test this one first, then numpy, then the others. frameworks = [] if preferred_framework is None else [preferred_framework] if preferred_framework != "np": frameworks.append("np") frameworks.extend([f for f in framework_to_test if f not in [preferred_framework, "np"]]) return {f: framework_to_test[f] for f in frameworks} def is_tensor(x): """ Tests if `x` is a `torch.Tensor`, `tf.Tensor`, `jaxlib.xla_extension.DeviceArray`, `np.ndarray` or `mlx.array` in the order defined by `infer_framework_from_repr` """ # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(x) for test_func in framework_to_test_func.values(): if test_func(x): return True # Tracers if is_torch_fx_proxy(x): return True if is_flax_available(): from jax.core import Tracer if isinstance(x, Tracer): return True return False def _is_numpy(x): return isinstance(x, np.ndarray) def is_numpy_array(x): """ Tests if `x` is a numpy array or not. """ return _is_numpy(x) def _is_torch(x): import torch return isinstance(x, torch.Tensor) def is_torch_tensor(x): """ Tests if `x` is a torch tensor or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch(x) def _is_torch_device(x): import torch return isinstance(x, torch.device) def is_torch_device(x): """ Tests if `x` is a torch device or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_device(x) def _is_torch_dtype(x): import torch if isinstance(x, str): if hasattr(torch, x): x = getattr(torch, x) else: return False return isinstance(x, torch.dtype) def is_torch_dtype(x): """ Tests if `x` is a torch dtype or not. Safe to call even if torch is not installed. """ return False if not is_torch_available() else _is_torch_dtype(x) def _is_tensorflow(x): import tensorflow as tf return isinstance(x, tf.Tensor) def is_tf_tensor(x): """ Tests if `x` is a tensorflow tensor or not. Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tensorflow(x) def _is_tf_symbolic_tensor(x): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(tf, "is_symbolic_tensor"): return tf.is_symbolic_tensor(x) return isinstance(x, tf.Tensor) def is_tf_symbolic_tensor(x): """ Tests if `x` is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not installed. """ return False if not is_tf_available() else _is_tf_symbolic_tensor(x) def _is_jax(x): import jax.numpy as jnp # noqa: F811 return isinstance(x, jnp.ndarray) def is_jax_tensor(x): """ Tests if `x` is a Jax tensor or not. Safe to call even if jax is not installed. """ return False if not is_flax_available() else _is_jax(x) def _is_mlx(x): import mlx.core as mx return isinstance(x, mx.array) def is_mlx_array(x): """ Tests if `x` is a mlx array or not. Safe to call even when mlx is not installed. """ return False if not is_mlx_available() else _is_mlx(x) def to_py_obj(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list. """ if isinstance(obj, (int, float)): return obj elif isinstance(obj, (dict, UserDict)): return {k: to_py_obj(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): try: arr = np.array(obj) if np.issubdtype(arr.dtype, np.integer) or np.issubdtype(arr.dtype, np.floating): return arr.tolist() except Exception: pass return [to_py_obj(o) for o in obj] framework_to_py_obj = { "pt": lambda obj: obj.tolist(), "tf": lambda obj: obj.numpy().tolist(), "jax": lambda obj: np.asarray(obj).tolist(), "np": lambda obj: obj.tolist(), } # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_py_obj[framework](obj) # tolist also works on 0d np arrays if isinstance(obj, np.number): return obj.tolist() else: return obj def to_numpy(obj): """ Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a Numpy array. """ framework_to_numpy = { "pt": lambda obj: obj.detach().cpu().numpy(), "tf": lambda obj: obj.numpy(), "jax": lambda obj: np.asarray(obj), "np": lambda obj: obj, } if isinstance(obj, (dict, UserDict)): return {k: to_numpy(v) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): return np.array(obj) # This gives us a smart order to test the frameworks with the corresponding tests. framework_to_test_func = _get_frameworks_and_test_func(obj) for framework, test_func in framework_to_test_func.items(): if test_func(obj): return framework_to_numpy[framework](obj) return obj class ModelOutput(OrderedDict): """ Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular python dictionary. <Tip warning={true}> You can't unpack a `ModelOutput` directly. Use the [`~utils.ModelOutput.to_tuple`] method to convert it to a tuple before. </Tip> """ def __init_subclass__(cls) -> None: """Register subclasses as pytree nodes. This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with `static_graph=True` with modules that output `ModelOutput` subclasses. """ if is_torch_available(): if version.parse(get_torch_version()) >= version.parse("2.2"): from torch.utils._pytree import register_pytree_node register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), serialized_type_name=f"{cls.__module__}.{cls.__name__}", ) else: from torch.utils._pytree import _register_pytree_node _register_pytree_node( cls, _model_output_flatten, partial(_model_output_unflatten, output_type=cls), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Subclasses of ModelOutput must use the @dataclass decorator # This check is done in __init__ because the @dataclass decorator operates after __init_subclass__ # issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed # Just need to check that the current class is not ModelOutput is_modeloutput_subclass = self.__class__ != ModelOutput if is_modeloutput_subclass and not is_dataclass(self): raise TypeError( f"{self.__module__}.{self.__class__.__name__} is not a dataclass." " This is a subclass of ModelOutput and so must use the @dataclass decorator." ) def __post_init__(self): """Check the ModelOutput dataclass. Only occurs if @dataclass decorator has been used. """ class_fields = fields(self) # Safety and consistency checks if not len(class_fields): raise ValueError(f"{self.__class__.__name__} has no fields.") if not all(field.default is None for field in class_fields[1:]): raise ValueError(f"{self.__class__.__name__} should not have more than one required field.") first_field = getattr(self, class_fields[0].name) other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(first_field): if isinstance(first_field, dict): iterator = first_field.items() first_field_iterator = True else: try: iterator = iter(first_field) first_field_iterator = True except TypeError: first_field_iterator = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(iterator): if not isinstance(element, (list, tuple)) or len(element) != 2 or not isinstance(element[0], str): if idx == 0: # If we do not have an iterator of key/values, set it as attribute self[class_fields[0].name] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self, element[0], element[1]) if element[1] is not None: self[element[0]] = element[1] elif first_field is not None: self[class_fields[0].name] = first_field else: for field in class_fields: v = getattr(self, field.name) if v is not None: self[field.name] = v def __delitem__(self, *args, **kwargs): raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.") def setdefault(self, *args, **kwargs): raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.") def pop(self, *args, **kwargs): raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.") def update(self, *args, **kwargs): raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.") def __getitem__(self, k): if isinstance(k, str): inner_dict = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__(self, name, value): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(name, value) super().__setattr__(name, value) def __setitem__(self, key, value): # Will raise a KeyException if needed super().__setitem__(key, value) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(key, value) def __reduce__(self): if not is_dataclass(self): return super().__reduce__() callable, _args, *remaining = super().__reduce__() args = tuple(getattr(self, field.name) for field in fields(self)) return callable, args, *remaining def to_tuple(self) -> tuple[Any]: """ Convert self to a tuple containing all the attributes/keys that are not `None`. """ return tuple(self[k] for k in self.keys()) if is_torch_available(): import torch.utils._pytree as _torch_pytree def _model_output_flatten(output: ModelOutput) -> tuple[list[Any], "_torch_pytree.Context"]: return list(output.values()), list(output.keys()) def _model_output_unflatten( values: Iterable[Any], context: "_torch_pytree.Context", output_type=None, ) -> ModelOutput: return output_type(**dict(zip(context, values))) if version.parse(get_torch_version()) >= version.parse("2.2"): _torch_pytree.register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), serialized_type_name=f"{ModelOutput.__module__}.{ModelOutput.__name__}", ) else: _torch_pytree._register_pytree_node( ModelOutput, _model_output_flatten, partial(_model_output_unflatten, output_type=ModelOutput), ) class ExplicitEnum(str, Enum): """ Enum with more explicit error message for missing values. """ @classmethod def _missing_(cls, value): raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}" ) class PaddingStrategy(ExplicitEnum): """ Possible values for the `padding` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ LONGEST = "longest" MAX_LENGTH = "max_length" DO_NOT_PAD = "do_not_pad" class TensorType(ExplicitEnum): """ Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an IDE. """ PYTORCH = "pt" TENSORFLOW = "tf" NUMPY = "np" JAX = "jax" MLX = "mlx" class ContextManagers: """ Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers` in the `fastcore` library. """ def __init__(self, context_managers: list[ContextManager]): self.context_managers = context_managers self.stack = ExitStack() def __enter__(self): for context_manager in self.context_managers: self.stack.enter_context(context_manager) def __exit__(self, *args, **kwargs): self.stack.__exit__(*args, **kwargs) def can_return_loss(model_class): """ Check if a given model can return loss. Args: model_class (`type`): The class of the model. """ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def find_labels(model_class): """ Find the labels used by a given model. Args: model_class (`type`): The class of the model. """ model_name = model_class.__name__ framework = infer_framework(model_class) if framework == "tf": signature = inspect.signature(model_class.call) # TensorFlow models elif framework == "pt": signature = inspect.signature(model_class.forward) # PyTorch models else: signature = inspect.signature(model_class.__call__) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def flatten_dict(d: MutableMapping, parent_key: str = "", delimiter: str = "."): """Flatten a nested dict into a single level dict.""" def _flatten_dict(d, parent_key="", delimiter="."): for k, v in d.items(): key = str(parent_key) + delimiter + str(k) if parent_key else k if v and isinstance(v, MutableMapping): yield from flatten_dict(v, key, delimiter=delimiter).items() else: yield key, v return dict(_flatten_dict(d, parent_key, delimiter)) @contextmanager def working_or_temp_dir(working_dir, use_temp_dir: bool = False): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def transpose(array, axes=None): """ Framework-agnostic version of `numpy.transpose` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.transpose(array, axes=axes) elif is_torch_tensor(array): return array.T if axes is None else array.permute(*axes) elif is_tf_tensor(array): import tensorflow as tf return tf.transpose(array, perm=axes) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.transpose(array, axes=axes) else: raise ValueError(f"Type not supported for transpose: {type(array)}.") def reshape(array, newshape): """ Framework-agnostic version of `numpy.reshape` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.reshape(array, newshape) elif is_torch_tensor(array): return array.reshape(*newshape) elif is_tf_tensor(array): import tensorflow as tf return tf.reshape(array, newshape) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.reshape(array, newshape) else: raise ValueError(f"Type not supported for reshape: {type(array)}.") def squeeze(array, axis=None): """ Framework-agnostic version of `numpy.squeeze` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.squeeze(array, axis=axis) elif is_torch_tensor(array): return array.squeeze() if axis is None else array.squeeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.squeeze(array, axis=axis) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.squeeze(array, axis=axis) else: raise ValueError(f"Type not supported for squeeze: {type(array)}.") def expand_dims(array, axis): """ Framework-agnostic version of `numpy.expand_dims` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.expand_dims(array, axis) elif is_torch_tensor(array): return array.unsqueeze(dim=axis) elif is_tf_tensor(array): import tensorflow as tf return tf.expand_dims(array, axis=axis) elif is_jax_tensor(array): import jax.numpy as jnp return jnp.expand_dims(array, axis=axis) else: raise ValueError(f"Type not supported for expand_dims: {type(array)}.") def tensor_size(array): """ Framework-agnostic version of `numpy.size` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays. """ if is_numpy_array(array): return np.size(array) elif is_torch_tensor(array): return array.numel() elif is_tf_tensor(array): import tensorflow as tf return tf.size(array) elif is_jax_tensor(array): return array.size else: raise ValueError(f"Type not supported for tensor_size: {type(array)}.") def infer_framework(model_class): """ Infers the framework of a given model without using isinstance(), because we cannot guarantee that the relevant classes are imported or available. """ for base_class in inspect.getmro(model_class): module = base_class.__module__ name = base_class.__name__ if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch") or name == "PreTrainedModel": return "pt" elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f"Could not infer framework from class {model_class}.") def torch_int(x): """ Casts an input to a torch int64 tensor if we are in a tracing context, otherwise to a Python int. """ if not is_torch_available(): return int(x) import torch return x.to(torch.int64) if torch.jit.is_tracing() and isinstance(x, torch.Tensor) else int(x) def torch_float(x): """ Casts an input to a torch float32 tensor if we are in a tracing context, otherwise to a Python float. """ if not is_torch_available(): return int(x) import torch return x.to(torch.float32) if torch.jit.is_tracing() and isinstance(x, torch.Tensor) else int(x) def filter_out_non_signature_kwargs(extra: Optional[list] = None): """ Decorator to filter out named arguments that are not in the function signature. This decorator ensures that only the keyword arguments that match the function's signature, or are specified in the `extra` list, are passed to the function. Any additional keyword arguments are filtered out and a warning is issued. Parameters: extra (`Optional[list]`, *optional*): A list of extra keyword argument names that are allowed even if they are not in the function's signature. Returns: Callable: A decorator that wraps the function and filters out invalid keyword arguments. Example usage: ```python @filter_out_non_signature_kwargs(extra=["allowed_extra_arg"]) def my_function(arg1, arg2, **kwargs): print(arg1, arg2, kwargs) my_function(arg1=1, arg2=2, allowed_extra_arg=3, invalid_arg=4) # This will print: 1 2 {"allowed_extra_arg": 3} # And issue a warning: "The following named arguments are not valid for `my_function` and were ignored: 'invalid_arg'" ``` """ extra = extra or [] extra_params_to_pass = set(extra) def decorator(func): sig = inspect.signature(func) function_named_args = set(sig.parameters.keys()) valid_kwargs_to_pass = function_named_args.union(extra_params_to_pass) # Required for better warning message is_instance_method = "self" in function_named_args is_class_method = "cls" in function_named_args # Mark function as decorated func._filter_out_non_signature_kwargs = True @wraps(func) def wrapper(*args, **kwargs): valid_kwargs = {} invalid_kwargs = {} for k, v in kwargs.items(): if k in valid_kwargs_to_pass: valid_kwargs[k] = v else: invalid_kwargs[k] = v if invalid_kwargs: invalid_kwargs_names = [f"'{k}'" for k in invalid_kwargs] invalid_kwargs_names = ", ".join(invalid_kwargs_names) # Get the class name for better warning message if is_instance_method: cls_prefix = args[0].__class__.__name__ + "." elif is_class_method: cls_prefix = args[0].__name__ + "." else: cls_prefix = "" warnings.warn( f"The following named arguments are not valid for `{cls_prefix}{func.__name__}`" f" and were ignored: {invalid_kwargs_names}", UserWarning, stacklevel=2, ) return func(*args, **valid_kwargs) return wrapper return decorator class TransformersKwargs(TypedDict, total=False): """ Keyword arguments to be passed to the loss function Attributes: num_items_in_batch (`Optional[torch.Tensor]`, *optional*): Number of items in the batch. It is recommended to pass it when you are doing gradient accumulation. output_hidden_states (`Optional[bool]`, *optional*): Most of the models support outputing all hidden states computed during the forward pass. output_attentions (`Optional[bool]`, *optional*): Turn this on to return the intermediary attention scores. output_router_logits (`Optional[bool]`, *optional*): For MoE models, this allows returning the router logits to compute the loss. cumulative_seqlens_q (`torch.LongTensor`, *optional*) Gets cumulative sequence length for query state. cumulative_seqlens_k (`torch.LongTensor`, *optional*) Gets cumulative sequence length for key state. max_length_q (`int`, *optional*): Maximum sequence length for query state. max_length_k (`int`, *optional*): Maximum sequence length for key state. """ num_items_in_batch: Optional["torch.Tensor"] output_hidden_states: Optional[bool] output_attentions: Optional[bool] output_router_logits: Optional[bool] cumulative_seqlens_q: Optional["torch.LongTensor"] cumulative_seqlens_k: Optional["torch.LongTensor"] max_length_q: Optional[int] max_length_k: Optional[int] def is_timm_config_dict(config_dict: dict[str, Any]) -> bool: """Checks whether a config dict is a timm config dict.""" return "pretrained_cfg" in config_dict def is_timm_local_checkpoint(pretrained_model_path: str) -> bool: """ Checks whether a checkpoint is a timm model checkpoint. """ if pretrained_model_path is None: return False # in case it's Path, not str pretrained_model_path = str(pretrained_model_path) is_file = os.path.isfile(pretrained_model_path) is_dir = os.path.isdir(pretrained_model_path) # pretrained_model_path is a file if is_file and pretrained_model_path.endswith(".json"): with open(pretrained_model_path) as f: config_dict = json.load(f) return is_timm_config_dict(config_dict) # pretrained_model_path is a directory with a config.json if is_dir and os.path.exists(os.path.join(pretrained_model_path, "config.json")): with open(os.path.join(pretrained_model_path, "config.json")) as f: config_dict = json.load(f) return is_timm_config_dict(config_dict) return False def set_attribute_for_modules(module: "torch.nn.Module", key: str, value: Any): """ Set a value to a module and all submodules. """ setattr(module, key, value) for submodule in module.children(): set_attribute_for_modules(submodule, key, value) def del_attribute_from_modules(module: "torch.nn.Module", key: str): """ Delete a value from a module and all submodules. """ # because we might remove it previously in case it's a shared module, e.g. activation function if hasattr(module, key): delattr(module, key) for submodule in module.children(): del_attribute_from_modules(submodule, key) def can_return_tuple(func): """ Decorator to wrap model method, to call output.to_tuple() if return_dict=False passed as a kwarg or use_return_dict=False is set in the config. Note: output.to_tuple() convert output to tuple skipping all `None` values. """ @wraps(func) def wrapper(self, *args, **kwargs): return_dict = self.config.return_dict if hasattr(self, "config") else True return_dict_passed = kwargs.pop("return_dict", return_dict) if return_dict_passed is not None: return_dict = return_dict_passed output = func(self, *args, **kwargs) if not return_dict and not isinstance(output, tuple): output = output.to_tuple() return output return wrapper # if is_torch_available(): # @torch._dynamo.disable @dataclass @requires(backends=("torch",)) class OutputRecorder: """ Configuration for recording outputs from a model via hooks. Attributes: target_class (Type): The class (e.g., nn.Module) to which the hook will be attached. index (Optional[int]): If the output is a tuple/list, optionally record only at a specific index. layer_name (Optional[str]): Name of the submodule to target (if needed), e.g., "transformer.layer.3.attn". class_name (Optional[str]): Name of the class to which the hook will be attached. Could be the suffix of class name in some cases. """ target_class: "type[torch.nn.Module]" index: Optional[int] = 0 layer_name: Optional[str] = None class_name: Optional[str] = None def check_model_inputs(func): """ Decorator to intercept specific layer outputs without using hooks. Compatible with torch.compile (Dynamo tracing). """ @wraps(func) def wrapper(self, *args, **kwargs): use_cache = kwargs.get("use_cache") if use_cache is None: use_cache = getattr(self.config, "use_cache", False) return_dict = kwargs.pop("return_dict", None) if return_dict is None: return_dict = getattr(self.config, "return_dict", True) if getattr(self, "gradient_checkpointing", False) and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False kwargs["use_cache"] = use_cache all_args = kwargs.copy() if "kwargs" in all_args: for k, v in all_args["kwargs"].items(): all_args[k] = v capture_flags = _CAN_RECORD_REGISTRY.get(str(self.__class__), {}) # there is a weak ref for executorch recordable_keys = { f"output_{k}": all_args.get( f"output_{k}", getattr( self.config, f"output_{k}", all_args.get("output_attentions", getattr(self.config, "output_attentions", False)), ), ) for k in capture_flags } collected_outputs = defaultdict(tuple) monkey_patched_layers = [] def make_capture_wrapper(module, orig_forward, key, index): @wraps(orig_forward) def wrapped_forward(*args, **kwargs): if key == "hidden_states" and len(collected_outputs[key]) == 0: collected_outputs[key] += (args[0],) if kwargs.get("debug_io", False): with model_addition_debugger_context( module, kwargs.get("debug_io_dir", "~/model_debug"), kwargs.get("prune_layers") ): output = orig_forward(*args, **kwargs) else: output = orig_forward(*args, **kwargs) if not isinstance(output, tuple): collected_outputs[key] += (output,) elif output[index] is not None: if key not in collected_outputs: collected_outputs[key] = (output[index],) else: collected_outputs[key] += (output[index],) return output return wrapped_forward if any(recordable_keys.values()): capture_tasks = [] for key, layer_specs in capture_flags.items(): if not recordable_keys.get(f"output_{key}", False): continue if not isinstance(layer_specs, list): layer_specs = [layer_specs] for specs in layer_specs: if not isinstance(specs, OutputRecorder): index = 0 if "hidden_states" in key else 1 class_name = None if not isinstance(specs, str) else specs target_class = specs if not isinstance(specs, str) else None specs = OutputRecorder(target_class=target_class, index=index, class_name=class_name) capture_tasks.append((key, specs)) for name, module in self.named_modules(): for key, specs in capture_tasks: # The second check is for multimodals where only backbone layer suffix is available if (specs.target_class is not None and isinstance(module, specs.target_class)) or ( specs.class_name is not None and name.endswith(specs.class_name) ): if specs.layer_name is not None and specs.layer_name not in name: continue # Monkey patch forward original_forward = module.forward module.forward = make_capture_wrapper(module, original_forward, key, specs.index) monkey_patched_layers.append((module, original_forward)) outputs = func(self, *args, **kwargs) # Restore original forward methods for module, original_forward in monkey_patched_layers: module.forward = original_forward # Inject collected outputs into model output for key in collected_outputs: if key == "hidden_states": collected_outputs[key] = collected_outputs[key][:-1] if hasattr(outputs, "vision_hidden_states"): collected_outputs[key] += (outputs.vision_hidden_states,) elif hasattr(outputs, "last_hidden_state"): collected_outputs[key] += (outputs.last_hidden_state,) outputs[key] = collected_outputs[key] elif key == "attentions": if isinstance(capture_flags[key], list) and len(capture_flags[key]) == 2: outputs[key] = collected_outputs[key][0::2] outputs["cross_" + key] = collected_outputs[key][1::2] else: outputs[key] = collected_outputs[key] else: outputs[key] = collected_outputs[key] if return_dict is False: outputs = outputs.to_tuple() return outputs return wrapper class GeneralInterface(MutableMapping): """ Dict-like object keeping track of a class-wide mapping, as well as a local one. Allows to have library-wide modifications though the class mapping, as well as local modifications in a single file with the local mapping. """ # Class instance object, so that a call to `register` can be reflected into all other files correctly, even if # a new instance is created (in order to locally override a given function) _global_mapping = {} def __init__(self): self._local_mapping = {} def __getitem__(self, key): # First check if instance has a local override if key in self._local_mapping: return self._local_mapping[key] return self._global_mapping[key] def __setitem__(self, key, value): # Allow local update of the default functions without impacting other instances self._local_mapping.update({key: value}) def __delitem__(self, key): del self._local_mapping[key] def __iter__(self): # Ensure we use all keys, with the overwritten ones on top return iter({**self._global_mapping, **self._local_mapping}) def __len__(self): return len(self._global_mapping.keys() | self._local_mapping.keys()) @classmethod def register(cls, key: str, value: Callable): cls._global_mapping.update({key: value}) def valid_keys(self) -> list[str]: return list(self.keys())
最新发布
08-08
<think>嗯,用户之前遇到了依赖冲突的问题,现在按照我的建议安装了指定版本的包,但出现了新的错误:`load_tensorflow`的跟踪栈,特别是关于`ValueError: Failed to import metagraph`。我需要分析可能的原因,并提供解决方案。 首先,用户的问题出现在加载TensorFlow模型到RKNN Toolkit时。错误信息提到了`tf_optimizer.py`中的失败,这可能与TensorFlow版本或模型结构有关。用户已经安装了指定的TensorFlow 2.6.2,但可能还有其他因素导致这个问题。 可能的因素包括: 1. **模型格式问题**:用户可能使用了SavedModel格式,而RKNN Toolkit需要冻结的GraphDef(.pb)模型。 2. **模型中的自定义层或操作**:如果模型包含RKNN不支持的层或操作,转换时会失败。 3. **TensorFlow安装问题**:虽然版本正确,但可能存在安装不完整或依赖项冲突。 4. **Python环境问题**:虚拟环境中可能存在残留文件或其他包的干扰。 接下来,我需要分步骤思考解决方案: **步骤一:检查模型格式** 用户可能尝试加载的是SavedModel,而RKNN可能需要冻结的.pb文件。建议用户使用`freeze_graph`工具将模型转换为冻结格式。同时,确保输入节点名称正确,可能需要使用TensorFlow的工具来查看模型结构。 **步骤二:验证模型兼容性** 用户需要检查模型中是否有自定义层或RKNN不支持的操作。运行模型在纯TensorFlow环境中的推理,确保模型本身没有问题。另外,可以尝试简化模型结构,排除复杂操作的影响。 **步骤三:环境彻底清理** 虽然用户创建了虚拟环境,但可能存在安装时的缓存或残留。建议彻底卸载TensorFlow和相关包,然后重新安装,确保所有依赖项都正确。 **步骤四:使用中间转换格式** 如果直接转换TensorFlow模型失败,可以尝试先将模型转换为ONNX格式,再通过RKNN加载ONNX模型。这可能需要额外的工具,如tf2onnx,但可能绕过一些兼容性问题。 **步骤五:日志和调试** 启用详细日志有助于定位问题。查看是否有更具体的错误信息,或者尝试在转换时设置不同的日志级别。此外,检查是否有路径或文件权限问题,导致模型无法正确读取。 **步骤六:寻求官方支持** 如果以上步骤都失败,建议用户查阅RKNN的官方文档或社区,看看是否有已知的解决方案。可能存在特定版本的RKNN Toolkit需要额外的补丁或配置。 最后,考虑到用户之前已经处理过依赖冲突,这次的问题可能更具体于模型本身或环境配置。需要逐步排除可能的原因,从模型格式到环境设置,确保每一步都符合RKNN Toolkit的要求。</think>━━━━━━━━━━━━━━━━━━ ### 错误根源分析 该错误发生在使用RKNN Toolkit加载TensorFlow模型时,核心原因是 **TensorFlow模型结构解析失败**。常见触发场景: ``` 1. 使用了不支持的模型格式(如SavedModel而非Frozen Graph) 2. 模型中包含RKNN不支持的TensorFlow操作 3. TensorFlow版本与模型结构不兼容(即使版本号匹配) ``` ━━━━━━━━━━━━━━━━━━ ### 逐步解决方案 #### 步骤一:确认模型格式要求 **必须使用冻结的TensorFlow GraphDef模型(.pb文件)** ```bash # 检查模型格式是否正确 file your_model.pb # 期望输出:data (protocol buffer binary format) # 查看模型输入输出节点名称 saved_model_cli show --dir your_model/ --all ``` > 📌 如果使用SavedModel格式,需先转换: > ```python > from tensorflow.python.tools import freeze_graph > freeze_graph.freeze_graph(...) # 参考官方冻结模型文档 > ``` #### 步骤二:强制指定输入输出节点 在`load_tensorflow`调用中显式声明节点名称: ```python rknn.load_tensorflow( tf_pb='model.pb', inputs=['input_1'], # 必须精确匹配输入节点名 outputs=['output_1'], # 必须精确匹配输出节点名 input_size_list=[[224,224,3]] ) ``` #### 步骤三:检查模型操作兼容性 运行以下代码验证模型是否包含非法操作: ```python import tensorflow as tf # 加载模型 with tf.io.gfile.GFile('model.pb', 'rb') as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) # 打印所有操作类型 ops = {node.op for node in graph_def.node} print(f"模型中包含的操作类型:{ops}") # 对比RKNN支持的操作列表 # 参考:https://github.com/rockchip-linux/rknn-toolkit2/blob/master/doc/RKNN_OP_List.md ``` > ⚠️ 若出现`TensorList*`、`While`等控制流操作,需修改模型结构 #### 步骤四:环境完整性验证 在虚拟环境中执行以下检查: ```bash # 确认TensorFlow精确版本 python -c "import tensorflow as tf; print(tf.__version__)" # 必须输出2.6.2 # 清理残留安装 pip uninstall -y tensorflow protobuf numpy pip install --no-cache-dir tensorflow==2.6.2 protobuf==3.12.2 # 检查ABI兼容性 python -c "import tensorflow as tf; print(tf.sysconfig.get_compile_flags())" # 应包含 '-D_GLIBCXX_USE_CXX11_ABI=0' ``` #### 步骤五:使用调试模式获取详细信息 ```python from rknn.api import RKNN rknn = RKNN(verbose=True) # 启用详细日志 rknn.config(target_platform='rk3588') # 根据实际硬件修改 ret = rknn.load_tensorflow(...) # 观察完整错误堆栈 ``` > 📍 关键日志线索: > - 若出现`Unsupported Ops: [...]`需修改模型 > - 若出现`Failed to parse meta graph`需检查模型冻结方式 ━━━━━━━━━━━━━━━━━━ ### 高级调试方案 #### 方案一:强制优化器降级 编辑RKNN源码(谨慎操作): ```python # 定位文件:rknn/base/convertor/tensorflow2onnx/tf_loader.py # 修改第722行附近的优化参数 config = tf.compat.v1.ConfigProto() config.graph_options.rewrite_options.disable_meta_optimizer = True # 新增 ``` #### 方案二:转ONNX中间格式 ```bash # 使用tf2onnx转换模型 python -m tf2onnx.convert --saved-model saved_model_dir --output model.onnx # 在RKNN中加载ONNX rknn.load_onnx(model='model.onnx') ``` #### 方案三:使用官方Docker环境 ```bash # 拉取Rockchip官方镜像 docker pull rockchip/rknn-toolkit2:1.5.0 # 运行容器并挂载模型目录 docker run -it --rm -v /path/to/models:/models rockchip/rknn-toolkit2:1.5.0 ``` ━━━━━━━━━━━━━━━━━━ ### 关键排查流程图 ``` 模型加载失败 ├─→ 检查模型格式 → 非冻结模型 → 使用freeze_graph转换 ├─→ 检查节点名称 → 名称错误 → 使用Netron可视化模型 ├─→ 检查操作兼容性 → 存在非法操作 → 修改模型结构 └─→ 检查TF版本 → 版本异常 → 完全重装指定版本环境 ``` 若仍无法解决,建议: 1. 提供完整的模型结构图和转换日志 2. 测试Rockchip提供的预训练模型是否可转换(验证环境完整性) 3. 在RK3588开发板上直接执行转换(部分操作需硬件支持)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值