Description
There are many lamps in a line. All of them are off at first. A series of operations are carried out on these lamps. On the i-th operation, the lamps whose numbers are the
multiple of i change the condition ( on to off and off to on ).
Input
Each test case contains only a number n ( 0< n<= 10^5)
in a line.
Output
Output
the condition of the n-th lamp after infinity operations ( 0 - off, 1 - on ).
Sample
Input
1 5
Sample
Output
1 0
Hint
Consider the second test case: The initial condition : 0 0 0 0 0 … After the first operation : 1 1 1 1 1 … After the second operation : 1 0 1 0 1 … After the third operation : 1 0 0 0 1 … After the fourth operation : 1 0 0 1 1 … After the fifth operation : 1 0 0 1 0 … The later operations cannot change the condition of the fifth lamp any more. So the answer
思路:
第1轮,所有编号是1的倍数的灯转换状态
第2轮,所有编号是2的倍数的灯转换状态
第i轮...
经历了无数n轮后,灯的状态已经不会再变化了(因为没有是n的倍数的灯编号了)
第2轮,所有编号是2的倍数的灯转换状态
第i轮...
经历了无数n轮后,灯的状态已经不会再变化了(因为没有是n的倍数的灯编号了)
欢迎交流:
#include<stdio.h>
#include<string.h>
int main()
{
int n;
while (scanf("%d", &n) != EOF)
{
int count = 0;
for (int i = 1; i <= n; i++)
{
if (n%i==0) count++;
}
if (count%2==0)
printf("0\n");
else printf("1\n");
}
return 0;
}
本文探讨了一种特殊情况下灯的状态变化问题。初始时所有灯都关闭,在一系列操作中,每轮将编号为当前轮次倍数的灯状态反转。经过无限轮后,最终灯的状态如何确定?文章提供了一个简洁的C语言程序来计算任意编号灯的最终状态。
1741

被折叠的 条评论
为什么被折叠?



