【小熊刷题】Balanced Binary Tree

本文深入探讨了如何通过递归算法判断并优化平衡二叉树,介绍了两种方法:传统的上行遍历和改进的下行遍历。详细解释了每个方法的实现逻辑、时间和空间复杂度,并对比了它们的效率。此外,文章还提供了一个实际的代码示例,帮助读者更好地理解并应用这些算法。

Question

Given a binary tree, determine if it is height-balanced.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differs by more than 1.

https://oj.leetcode.com/problems/balanced-binary-tree/

*Difficulty: Easy, Frequency: High

My Solution - Top-down recursion

runtime: O(n^2), stack space O(n)

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        if(root == null) return true;
        if(Math.abs(depth(root.left)-depth(root.right)) > 1) return false;
        return isBalanced(root.left) && isBalanced(root.right);
    }

    public int depth(TreeNode node){
        int depth = 0;
        if(node == null) return 0;
        return Math.max(depth(node.left),depth(node.right))+1;
    }
}

Bottom-up recursion

上面的方法,会对每一个node的maxDepth进行重复计算,故用bottom-up的方法更有效。从leaf往上,如果左右有不是balanced记depth为-1,看到-1立即返回

O(n) runtime, O(n) stack space

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
public class Solution {
    public boolean isBalanced(TreeNode root) {
        if(root == null) return true;
        if(Math.abs(depth(root.left)-depth(root.right)) > 1) return false;
        return isBalanced(root.left) && isBalanced(root.right);
    }

    public int depth(TreeNode node){
        int depth = 0;
        if(node == null) return 0;
        return Math.max(depth(node.left),depth(node.right))+1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值