Keras函数式(functional)API的使用

这篇博客详细介绍了如何使用Keras的功能性API构建多种神经网络模型,包括多层感知器、卷积神经网络、循环神经网络、双向循环神经网络、共享输入层模型、共享特征提取层、多输入模型和多输出模型。每个模型都给出了具体的结构和参数配置,适用于不同的任务,如图像分类、文本序列分类和二分类问题。参考了Keras官方文档和其他深度学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多层感知器(Multilayer Perceptron)

定义了用于二分类的多层感知器模型。模型输入32维特征,经过三个全连接层,每层使用relu线性激活函数,并且在输出层中使用sigmoid激活函数,最后用于二分类。

##------ Multilayer Perceptron ------##
from keras.models import Model
from keras.layers import Input, Dense
from keras import backend as K
K.clear_session() 

# MLP model
x = Input(shape=(32,))
hidden1 = Dense(10, activation='relu')(x)
hidden2 = Dense(20, activation='relu')(hidden1)
hidden3 = Dense(10, activation='relu')(hidden2)
output = Dense(1, activation='sigmoid')(hidden3)
model = Model(inputs=x, outputs=output)

# summarize layers
model.summary()

模型的结构和参数如下:
Multilayer Perceptron

卷积神经网络(Convolutional Neural Network)

定义用于图像分类的卷积神经网络。该模型接收3通道的64×64图像作为输入,然后经过两个卷积和池化层的序列作为特征提取器,接着过一个全连接层,最后输出层过softmax激活函数进行10个类别的分类。

##------ Convolutional Neural Network ------##
from keras.models import Model
from keras.layers import Input
from keras.layers import Dense, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
K.clear_session()

# CNN model
x = Input(shape=(64,64,3))
conv1 = Conv2D(16, (5,5), activation='relu')(x)
pool1 = MaxPooling2D((2,2))(conv1)
conv2 = Conv2D(32, (3,3), activation='relu')(pool1)
pool2 = MaxPooling2D((2,2))(conv2)
conv3 = Conv2D(32, (3,3), activation='relu')(pool2)
pool3 = MaxPooling2D((2,2))(conv3)
flat = Flatten()(po
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值