leetcode 508. Most Frequent Subtree Sum

本文介绍了一种算法,用于寻找给定树中最频繁出现的子树和。通过后序遍历的方法,有效地统计了每个子树的和,并利用HashMap记录了各子树和的出现频率。最终找出出现频率最高的子树和。

Given the root of a tree, you are asked to find the most frequent subtree sum. The subtree sum of a node is defined as the sum of all the node values formed by the subtree rooted at that node (including the node itself). So what is the most frequent subtree sum value? If there is a tie, return all the values with the highest frequency in any order.

Examples 1
Input:

  5
 /  \
2   -3
return [2, -3, 4], since all the values happen only once, return all of them in any order.

Examples 2
Input:

  5
 /  \
2   -5
return [2], since 2 happens twice, however -5 only occur once.

Note: You may assume the sum of values in any subtree is in the range of 32-bit signed integer.

我写的代码好长啊,而且用了很多Java里的工具。

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;

public class Most_Frequent_Subtree_Sum_508 {

	void getSum(TreeNode root){
		if(root==null){
			return;
		}
		if(root.left!=null){
			getSum(root.left);
			root.val+=root.left.val;
		}
		if(root.right!=null){
			getSum(root.right);
			root.val+=root.right.val;
		}
	}
	
	void setNumber(Map<Integer,Integer> map,TreeNode root){
		if(root==null){
			return;
		}
		if(map.get(root.val)==null){
			map.put(root.val, 1);
		}
		else{
			int num=map.get(root.val);
			map.put(root.val, num+1);
		}
		setNumber(map, root.left);
		setNumber(map, root.right);
	}
	
	public int[] findFrequentTreeSum(TreeNode root) {
		if(root==null){
			return new int[]{};
		}
		getSum(root);
		Map<Integer, Integer> map = new HashMap<Integer, Integer>();
		setNumber(map, root);
		List<Map.Entry<Integer,Integer>> list = new ArrayList<Map.Entry<Integer,Integer>>(map.entrySet());
		Collections.sort(list,new Comparator<Map.Entry<Integer,Integer>>() {
            //降序排序
            public int compare(Entry<Integer, Integer> o1,
                    Entry<Integer, Integer> o2) {
                return o2.getValue().compareTo(o1.getValue());
            }
            
        });
		int max=list.get(0).getValue();
		int numOfMax=1;
		for(int i=1;i<list.size();i++){
            int num=list.get(i).getValue();
            if(num==max){
            	numOfMax++;
            }
            else{
            	break;
            }
        }
		int[] result=new int[numOfMax];
		for(int i=0;i<numOfMax;i++){
			result[i]=list.get(i).getKey();
		}
		return result;
		
	}

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		Most_Frequent_Subtree_Sum_508 m=new Most_Frequent_Subtree_Sum_508();
		TreeNode root=new TreeNode(5);
		root.left=new TreeNode(2);
		root.right=new TreeNode(-5);
		int[] result=m.findFrequentTreeSum(root);
		for(int i=0;i<result.length;i++){
			System.err.print(result[i]+" ");
		}
	}
}
后来想想很多都是没必要的,比如倒序排序,直接在遍历root的时候用一个int来记录最大出现次数就好了。之后再遍历map,找到value值是那个最大int的即可。还有没必要遍历两次树,在第一次遍历的时候就可以put到map里。

大神就是这样想的,代码简洁好多。

public class Solution {
    Map<Integer, Integer> sumToCount;
    int maxCount;
    
    public int[] findFrequentTreeSum(TreeNode root) {
        maxCount = 0;
        sumToCount = new HashMap<Integer, Integer>();
        
        postOrder(root);
        
        List<Integer> res = new ArrayList<>();
        for (int key : sumToCount.keySet()) {
            if (sumToCount.get(key) == maxCount) {
                res.add(key);
            }
        }
        
        int[] result = new int[res.size()];
        for (int i = 0; i < res.size(); i++) {
            result[i] = res.get(i);
        }
        return result;
    }
    
    private int postOrder(TreeNode root) {
        if (root == null) return 0;
        
        int left = postOrder(root.left);
        int right = postOrder(root.right);
        
        int sum = left + right + root.val;
        int count = sumToCount.getOrDefault(sum, 0) + 1;
        sumToCount.put(sum, count);
        
        maxCount = Math.max(maxCount, count);
        
        return sum;
    }
}
Idea is post-order traverse the tree and get sum of every sub-tree, put sum to count mapping to a HashMap. Then generate result based on the HashMap.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值