Exception and Interrupts Notes of 80386 Programmer manual

本文介绍了x86架构下的中断和异常处理机制,包括可屏蔽中断、不可屏蔽中断、故障、陷阱及中止等类型,并详细解释了它们的区别及处理器如何进行处理。此外,还讨论了保护模式下控制转移的基本原理。
  1. Interrupts
    • Maskable interrupts, which are signalled via the INTR pin.
    • Nonmaskable interrupts, which are signalled via the NMI (Non-Maskable Interrupt) pin.
  2. Exceptions
    • Processor detected. These are further classified as faults, traps, and aborts.
    • Programmed. The instructions INTO, INT 3, INT n, and BOUND can trigger exceptions. These instructions are often called "software interrupts", but the processor handles them as exceptions.

Faults
Faults are exceptions that are reported "before" theinstruction causingthe exception. Faults are either detected beforethe instruction begins to execute, or during execution of theinstruction. If detected during the instruction, the fault isreported with the machine restored to a state that permits theinstruction to be restarted.
Traps
A trap is an exception that is reported at the instruction boundary immediately after the instruction in which the exception was detected.
Aborts
An abort is an exception that permits neither precise location of the instruction causing the exception nor restart of the program that caused the exception. Aborts are used to report severe errors,such as hardware errors and inconsistent or illegal values in system tables.
Table 1. Interrupt and Exception ID Assignments

Identifier   Description

0            Divide error
1            Debug exceptions
2            Nonmaskable interrupt
3            Breakpoint (one-byte INT 3 instruction)
4            Overflow (INTO instruction)
5            Bounds check (BOUND instruction)
6            Invalid opcode
7            Coprocessor not available
8            Double fault
9            (reserved)
10           Invalid TSS
11           Segment not present
12           Stack exception
13           General protection
14           Page fault
15           (reserved)
16           Coprecessor error
17-31        (reserved)
32-255       Available for external interrupts via INTR pin

Basics of Protected Control Transfer

Exceptions and interrupts are both" protected control transfers,"which cause the processor to switch from user to kernel mode(CPL=0) without giving the user-mode code any opportunity to interfere with the functioning of the kernel or other environments.

Interrupt is asynchronous, exception is synchronous. X86 use IDT(Interrupt Descriptor Table, a mini GDT for interrupt) and TSS(Task State Segment, to save the context of current task).

Example

Let's say the processor is executing code in a user environment and encounters a divide instruction that attempts to divide by zero.

  1. The processor switches to the stack defined by theSS0 and ESP0 fields of the TSS,which in JOS will hold the values GD_KD and KSTACKTOP, respectively.
  2. The processor pushes the exception parameters on the kernel stack, starting at address KSTACKTOP:
                         +--------------------+ KSTACKTOP             
                         | 0x00000 | old SS   |     " - 4
                         |      old ESP       |     " - 8
                         |     old EFLAGS     |     " - 12
                         | 0x00000 | old CS   |     " - 16
                         |      old EIP       |     " - 20 <---- ESP 
                         +--------------------+             
    	
  3. Because we're handling a divide error,which is interrupt vector 0 on the x86,the processor reads IDT entry 0 and setsCS:EIP to point to the handler function described by the entry.
  4. The handler function takes control and handles the exception,for example by terminating the user environment.

For certain types of x86 exceptions,in addition to the "standard" five words above,the processor pushes onto the stack another word containing an error code.The page fault exception, number 14,is an important example.See the 80386 manual to determine for which exception numbers the processor pushes an error code,and what the error code means in that case.When the processor pushes an error code,the stack would look as follows at the beginning of the exception handler when coming in from user mode:

                     +--------------------+ KSTACKTOP             
                     | 0x00000 | old SS   |     " - 4
                     |      old ESP       |     " - 8
                     |     old EFLAGS     |     " - 12
                     | 0x00000 | old CS   |     " - 16
                     |      old EIP       |     " - 20
                     |     error code     |     " - 24 <---- ESP


【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值